About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 861569, 7 pages
http://dx.doi.org/10.1155/2012/861569
Research Article

Laser Writing of Multiscale Chiral Polymer Metamaterials

1Department of Chemical and Biological Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
2Department of Electrical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
3Institute for Lasers, Photonics and Biophotonics, University at Buffalo SUNY, Buffalo, NY 14260, USA
4Department of Chemistry, University at Buffalo SUNY, Buffalo, NY 14260, USA

Received 1 July 2012; Revised 31 July 2012; Accepted 31 July 2012

Academic Editor: Ivan D. Rukhlenko

Copyright © 2012 E. P. Furlani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968.
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, p. 1686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science, vol. 315, no. 5819, pp. 1699–1701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” Journal of Applied Physics, vol. 107, no. 9, Article ID 093104, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Physical Review B, vol. 79, no. 8, Article ID 085111, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Physical Review B, vol. 80, no. 15, Article ID 153103, 4 pages, 2009.
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics, vol. 1, no. 4, pp. 224–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Materials, vol. 6, no. 11, pp. 824–832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Advanced Materials, vol. 14, pp. 158–160, 2002.
  16. W. M. Zhu, A. Q. Liu, X. M. Zhang et al., “Switchable magnetic metamaterials using micromachining processes,” Advanced Materials, vol. 23, no. 15, pp. 1792–1796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Materials, vol. 7, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Valentine, S. Zhang, T. Zentgraf et al., “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, no. 7211, pp. 376–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. M. Shalaev, W. Cai, U. K. Chettiar et al., “Negative index of refraction in optical metamaterials,” Optics Letters, vol. 30, no. 24, pp. 3356–3358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. N. Grigorenko, A. K. Geim, H. F. Gleeson et al., “Nanofabricated media with negative permeability at visible frequencies,” Nature, vol. 438, no. 7066, pp. 335–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Optics Letters, vol. 31, no. 12, pp. 1800–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science, vol. 312, no. 5775, pp. 892–894, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials, vol. 2, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” Journal of the American Chemical Society, vol. 132, no. 49, pp. 17346–17348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Shukla, E. P. Furlani, X. Vidal, M. T. Swihart, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano, vol. 5, no. 3, pp. 1947–1957, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Shukla, E. P. Furlani, X. Vidal, M. T. Swihart, and P. N. Prasad, “Two-photon lithography of sub-wavelength metallic structures in a polymer matrix,” Advanced Materials, vol. 22, no. 33, pp. 3695–3699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Physical Review Letters, vol. 90, no. 10, Article ID 107404, 4 pages, 2003. View at Scopus
  28. M. Kuwata-Gonokami, N. Saito, Y. Ino et al., “Giant optical activity in quasi-two-dimensional planar nanostructures,” Physical Review Letters, vol. 95, no. 22, Article ID 227401, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Baev, M. Samoc, P. N. Prasad, M. Krykunov, and J. Autschbach, “A quantum chemical approach to the design of chiral negative index materials,” Optics Express, vol. 15, no. 9, pp. 5730–5741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Pergamon Press.
  31. E. P. Furlani and A. Baev, “Optical nanotrapping using cloaking metamaterial,” Physical Review E, vol. 79, no. 2, Article ID 026607, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. P. Furlani and A. Baev, “Free-space excitation of resonant cavities formed from cloaking metamaterial,” Journal of Modern Optics, vol. 56, no. 4, pp. 523–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. E. P. Furlani, R. Biswas, A. N. Cartwright, and N. M. Litchinitser, “Antiresonant guiding optofluidic biosensor,” Optics Communications, vol. 284, no. 16-17, pp. 4094–4098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. S. Oh, W.-Ch. Law, A. Baev, et al., “A new twist on optical metamaterials: resonantly coupled hybrid chiral nanocomposites for metaphotonics,” Nature Photonics. In press.
  35. H. S. Oh, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Dramatic structural enhancement of chirality in photopatternable nanocomposites of chiral poly(fluorene-alt-benzothiadiazole) (PFBT) in achiral SU-8 photoresist,” Advanced Functional Materials. In press. View at Publisher · View at Google Scholar