About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 869829, 4 pages
http://dx.doi.org/10.1155/2012/869829
Research Article

In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

1Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue L-231, Livermore, CA 94551, USA
2Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
3Department of Electrical Engineering, University of California, Berkeley, CA 94720, USA

Received 2 May 2011; Revised 2 November 2011; Accepted 16 November 2011

Academic Editor: Eric Pei Yu Chiou

Copyright © 2012 Peter J. Pauzauskie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, vol. 8, no. 5, pp. 609–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, no. 11, Article ID 113104, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. K. Balasubramanian and M. Burghard, “Chemically functionalized carbon nanotubes,” Small, vol. 1, no. 2, pp. 180–192, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. Z. Yu and L. Brus, “Rayleigh and Raman scattering from individual carbon nanotube bundles,” The Journal of Physical Chemistry B, vol. 105, no. 6, pp. 1123–1134, 2001. View at Scopus
  7. R. Krupke, F. Hennrich, H. von Löhneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, pp. 344–347, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Letters, vol. 4, no. 8, pp. 1415–1419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. O. M. Maragò, P. H. Jones, F. Bqnaccorso et al., “Femtonewton force sensing with optically trapped nanotubes,” Nano Letters, vol. 8, no. 10, pp. 3211–3216, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Physical Review Letters, vol. 101, no. 12, Article ID 127402, 2008. View at Publisher · View at Google Scholar
  11. R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 1998.