About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 968780, 12 pages
http://dx.doi.org/10.1155/2012/968780
Research Article

Recent Advances in Multiband Printed Antennas Based on Metamaterial Loading

1GEMMA/CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
2Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III, 28911 Madrid, Spain

Received 16 May 2012; Accepted 9 July 2012

Academic Editor: Ivan D. Rukhlenko

Copyright © 2012 F. Paredes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. V. Eleftheriades and K. G. Balmain, Eds., Negative-Refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, New York, NY, USA, 2005.
  2. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, NY, USA, 2006.
  3. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, New York, NY, USA, 2006.
  4. R. Marques, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, NY, USA, 2008.
  5. F. Capolino, Ed., Metamaterials Handbook, CRC Press, Boca Raton, Fla, USA, 2009.
  6. L. Solymar and E. Shamonina, Waves in Metamaterials, Oxford University Press, Oxford, UK, 2009.
  7. T. J. Cui, D. R. Smith, and R. Liu, Eds., Metamaterials: Theory, Design and Applications, Springer, New York, NY, USA, 2010.
  8. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, New York, NY, USA, 2010.
  9. G. Shvets and I. Sukerman, Eds., Plasmonics and Plasmonics Metamaterials: Analysis and Applications, World Scientific, 2011.
  10. Y. Hao and R. Mittra, FDTD Modelling of Metamaterials: Modeling and Applications, Artech House, 2009.
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000. View at Scopus
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Scopus
  13. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968.
  14. A. K. Iyer and G. V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves,” in Proceedings of the IEEE MSS-S International Microwave Symposium Digest, pp. 1067–1070, June 2002. View at Scopus
  15. A. A. Oliner, “A periodic-structure negative-refractive-index medium without resonant elements,” in Proceedings of the IEEE-AP-S USNC/URSI National Radio Science Meeting: URSI Digest, p. 41, San Antonio, Tex, USA, June 2002.
  16. C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line”,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 412–415, Los Angeles, Calif, USA, June 2002. View at Scopus
  17. F. Martín, J. Bonache, F. Falcone, M. Sorolla, and R. Marqués, “Split ring resonator-based left-handed coplanar waveguide,” Applied Physics Letters, vol. 83, no. 22, pp. 4652–4654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Falcone, F. Martin, J. Bonache, R. Marqués, and M. Sorolla, “Coplanar waveguide structures loaded with split-ring resonators,” Microwave and Optical Technology Letters, vol. 40, no. 1, pp. 3–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Durán-Sindreu, A. Vélez, G. Sisó et al., “Recent advances in metamaterial transmission lines based on split rings,” Proceedings of the IEEE, vol. 99, pp. 1701–1710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative, permeability and left-handed metamaterials,” Physical Review B, vol. 65, no. 14, Article ID 144440, pp. 1–6, 2002. View at Scopus
  21. F. Falcone, T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and M. Sorolla, “Effective negative-ε stopband microstrip lines based on complementary split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Falcone, T. Lopetegi, M. A. G. Laso et al., “Babinet principle applied to the design of metasurfaces and metamaterials,” Physical Review Letters, vol. 93, no. 19, Article ID 197401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Baena, J. Bonache, F. Martín et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Martel, R. Marqués, F. Falcone et al., “A new LC series element for compact bandpass filter design,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 5, pp. 210–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Vélez, F. Aznar, J. Bonache, M. C. Velázquez-Ahumada, J. Martel, and F. Martín, “Open Complementary Split Ring Resonators (OCSRRs) and their application to wideband cpw band pass filters,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 4, pp. 197–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Durán-Sindreu, A. Vélez, F. Aznar, G. Sisó, J. Bonache, and F. Martín, “Applications of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3395–3403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical Review B, vol. 69, no. 1, Article ID 014402, pp. 1–5, 2004. View at Scopus
  28. F. Falcone, F. Martín, J. Bonache et al., “Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators,” Microwave and Optical Technology Letters, vol. 42, no. 5, pp. 386–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2258–2267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1640–1647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas and Propagation Magazine, vol. 50, no. 5, pp. 25–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Erentok and R. W. Ziolkowski, “A dual-band efficient metamaterial-inspired electrically-small magnetic-based antenna,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (AP-S '07), pp. 1877–1880, Honolulu, Hawaii, USA, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Zhu and G. V. Eleftheriades, “Dual-band metamaterial-inspired small monopole antenna for WiFi applications,” Electronics Letters, vol. 45, no. 22, pp. 1104–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. J. Herraiz-Martínez, L. E. García-Muñoz, D. González-Ovejero, V. González-Posadas, and D. Segovia-Vargas, “Dual-frequency printed dipole loaded with split ring resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 137–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. J. Herraiz-Martínez, L. E. García-Muñoz, D. González-Ovejero, V. González-Posadas, and D. Segovia-Vargas, “Dual-frequency printed dipole loaded with split ring resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 137–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Montero-de-Paz, E. Ugarte-Muñoz, F. J. Herraiz-Martínez, V. Gonzáalez-Posadas, L. E. García-Muñoz, and D. Segovia-Vargas, “Multifrequency self-diplexed single patch antennas loaded with split ring resonators,” Progress in Electromagnetics Research, vol. 113, pp. 47–66, 2011. View at Scopus
  37. F. J. Herraiz-Martínez, F. Paredes, G. Zamora, F. Martín, and J. Bonache, “Dual-band printed dipole antenna loaded with open complementary split-ring resonators (OCSRRs) for wireless applications,” Microwave and Optical Technology Letters, vol. 54, no. 4, pp. 1014–1017, 2012. View at Publisher · View at Google Scholar
  38. F. J. Herraiz-Martínez, G. Zamora, F. Paredes, F. Martín, and J. Bonache, “Multiband printed monopole antennas loaded with open complementary split ring resonators for PANs and WLANs,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1528–1531, 2011. View at Publisher · View at Google Scholar
  39. Z. Živković and A. Šarolić, “Gain and antenna factor measurements of broadband biconical dipole in the GTEM cell,” in Proceedings of the 52nd International Symposium (ELMAR '10), pp. 297–300, Zadar, Cratia, September 2010. View at Scopus
  40. F. Paredes, G. Zamora, J. Bonache, and F. Martín, “Dual-band impedance-matching networks based on split-ring resonators for applications in RF identification (RFID),” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1159–1166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Paredes, G. Zamora, F. J. Herraiz-Martínez, F. Martín, and J. Bonache, “Dual-band UHF-RFID tags based on meander line antennas loaded with spiral resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 768–771, 2011.
  42. F. Paredes, G. Zamora, F. Javier Herraiz-Martínez, F. Martín, and J. Bonache, “Dual-band RFID Tags based on Folded Dipole Antennas Loaded with Spiral Resonators,” in Proceedings of the IEEE International Workshop on Antenna Technology: Small Antennas and Unconventional Applications (IWAT '12), Tucson, Ariz, USA, March 2012.