About this Journal Submit a Manuscript Table of Contents
Advances in Operations Research
Volume 2011 (2011), Article ID 143732, 38 pages
http://dx.doi.org/10.1155/2011/143732
Research Article

Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques

Institute of Computer Graphics and Algorithms, Vienna University of Technology, 1040 Vienna, Austria

Received 20 November 2010; Accepted 5 March 2011

Academic Editor: I. L. Averbakh

Copyright © 2011 Andreas M. Chwatal and Günther R. Raidl. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R.-S. Chang and S.-J. Leu, “The minimum labeling spanning trees,” Information Processing Letters, vol. 63, no. 5, pp. 277–282, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  2. A. M. Chwatal, G. R. Raidl, and O. Dietzel, “Compressing fingerprint templates by solving an extended minimum label spanning tree problem,” in Proceedings of the 7th Metaheuristics International Conference (MIC '07), Montreal, Canada, 2007.
  3. S. O. Krumke and H.-C. Wirth, “On the minimum label spanning tree problem,” Information Processing Letters, vol. 66, no. 2, pp. 81–85, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. Y. Wan, G. Chen, and Y. Xu, “A note on the minimum label spanning tree,” Information Processing Letters, vol. 84, no. 2, pp. 99–101, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. Y. Xiong, B. Golden, and E. Wasil, “A one-parameter genetic algorithm for the minimum labeling spanning tree problem,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 55–60, 2005. View at Publisher · View at Google Scholar
  6. S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman, “Constructive heuristics for the minimum labelling spanning tree problem: a preliminary comparison,” Tech. Rep., DEIOC, 2006.
  7. Y. Xiong, B. Golden, and E. Wasil, “Improved heuristics for the minimum label spanning tree problem,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 700–703, 2006. View at Publisher · View at Google Scholar
  8. J. Nummela and B. A. Julstrom, “An effective genetic algorithm for the minimum-label spanning tree problem,” in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO '06), pp. 553–558, ACM Press, 2006.
  9. T. Brüggemann, J. Monnot, and G. J. Woeginger, “Local search for the minimum label spanning tree problem with bounded color classes,” Operations Research Letters, vol. 31, no. 3, pp. 195–201, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. R. Cerulli, A. Fink, M. Gentili, and S. Voß, “Metaheuristics comparison for the minimum labelling spanning tree problem,” in The Next Wave in Computing, Optimization, and Decision Technologies, vol. 29 of Operations Research/Computer Science Interfaces Series, pp. 93–106, Springer, New York, NY, USA, 2005.
  11. S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman, “Mejora de la exploracion y la explotacion de las heuristicas constructivas para el mlstp,” in Spanish Meeting on Metaheuristics, 2007.
  12. S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-Pérez, “Heuristics based on greedy randomized adaptive search and variable neighbourhood search for the minimum labelling spanning tree problem,” European Journal of Operational Research, vol. 196, no. 2, pp. 440–449, 2009.
  13. S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-Pérez, “Solving the minimum labelling spanning tree problem using hybrid local search,” Tech. Rep., Brunel University, 2007.
  14. S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez, “Variable neighbourhood search for the minimum labelling Steiner tree problem,” Annals of Operations Research, vol. 172, pp. 71–96, 2009. View at Publisher · View at Google Scholar
  15. Y. Chen, N. Cornick, A. O. Hall, et al., “Comparison of heuristics for solving the gmlst problem,” in Telecommunications Modeling, Policy, and Technology, vol. 44 of Operations Research/Computer Science Interfaces Series, pp. 191–217, Springer, New York, NY, USA, 2008.
  16. M. E. Captivo, J. C. N. Clímaco, and M. M. B. Pascoal, “A mixed integer linear formulation for the minimum label spanning tree problem,” Computers & Operations Research, vol. 36, no. 11, pp. 3082–3085, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. A. M. Chwatal, G. R. Raidl, and K. Oberlechner, “Solving a k-node minimum label spanning arborescence problem to compress fingerprint templates,” Journal of Mathematical Modelling and Algorithms, vol. 8, no. 3, pp. 293–334, 2009. View at Publisher · View at Google Scholar
  18. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, New York, NY, USA, 1999.
  19. T. L. Magnanti and L. A. Wolsey, “Optimal trees,” in Network Models, M. O. Ball, et al., Ed., vol. 7 of Handbook in Operations Research and Management Science, pp. 503–615, North-Holland, Amsterdam, The Netherlands, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel, “Obtaining optimal k-cardinality trees fast,” Journal on Experimental Algorithmics, vol. 14, pp. 2.5–2.23, 2009.
  21. I. Ljubić, Exact and memetic algorithms for two network design problems, Ph.D. thesis, Vienna University of Technology, Vienna, Austria, 2004.
  22. C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formulation of traveling salesman problems,” Journal of the Association for Computing Machinery, vol. 7, pp. 326–329, 1960. View at Zentralblatt MATH
  23. B. V. Cherkassky and A. V. Goldberg, “On implementing the push-relabel method for the maximum flow problem,” Algorithmica, vol. 19, no. 4, pp. 390–410, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. G. Cornuéjols and A. Sassano, “On the 0,1 facets of the set covering polytope,” Mathematical Programming, vol. 43, no. 1, pp. 45–55, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. M. Grötschel and O. Holland, “Solving matching problems with linear programming,” Mathematical Programming, vol. 33, no. 3, pp. 243–259, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. SCIP—Solving Constraint Integer Programs, “Konrad-Zuse-Zentrum für Informationstechnik Berlin,” Version 1.2, http://scip.zib.de/.
  27. ILOG Concert Technology, CPLEX. ILOG. Version 12.0, http://www.ilog.com/.