About this Journal Submit a Manuscript Table of Contents
Advances in Orthopedics
Volume 2013 (2013), Article ID 970703, 9 pages
http://dx.doi.org/10.1155/2013/970703
Review Article

A Perspective on Robotic Assistance for Knee Arthroplasty

1Curexo Technology Corporation, Fremont, CA 94539, USA
2Department of Orthopaedics, University of California at Davis School of Medicine, Sutter General Hospital, Sacramento, CA 95816, USA

Received 8 August 2012; Accepted 30 March 2013

Academic Editor: Justin P. Cobb

Copyright © 2013 Nathan A. Netravali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Swank, M. Alkire, M. Conditt, and J. H. Lonner, “Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics,” The American Journal of Orthopedics, vol. 38, no. 2, supplement, pp. 32–36, 2009. View at Scopus
  2. D. L. Riddle, W. A. Jiranek, and F. J. McGlynn, “Yearly incidence of unicompartmental knee arthroplasty in the United States,” Journal of Arthroplasty, vol. 23, no. 3, pp. 408–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. F. Sharkey, W. J. Hozack, R. H. Rothman, S. Shastri, and S. M. Jacoby, “Why are total knee arthroplasties failing today?” Clinical Orthopaedics and Related Research, no. 404, pp. 7–13, 2002. View at Scopus
  4. K. P. Emmerson, C. G. Moran, and I. M. Pinder, “Survivorship analysis of the kinematic stabilizer total knee replacement: A 10–14 year follow-up,” Journal of Bone and Joint Surgery B, vol. 78, pp. 441–445, 1996.
  5. W. A. Colizza, J. N. Insall, and G. R. Scuderi, “The posterior-stabilized knee prosthesis: Assessment of polyethylene damage and osteolysis after a ten-year minimum follow-up,” Journal of Bone and Joint Surgery A, vol. 77, pp. 1713–1720, 1995.
  6. C. Rajasekhar, S. Das, and A. Smith, “Unicompartmental knee arthroplasty: 2- to 12-year results in a community hospital,” Journal of Bone and Joint Surgery B, vol. 86, no. 7, pp. 983–985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Bourne, B. M. Chesworth, A. M. Davis, N. N. Mahomed, and K. D. J. Charron, “Patient satisfaction after total knee arthroplasty: who is satisfied and who is not?” Clinical Orthopaedics and Related Research, vol. 468, no. 1, pp. 57–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Anderson, R. L. Wixson, D. Tsai, S. D. Stulberg, and R. W. Chang, “Functional outcome and patient satisfaction in total knee patients over the age of 75,” Journal of Arthroplasty, vol. 11, no. 7, pp. 831–840, 1996. View at Scopus
  9. R. L. Barrack, G. Engh, C. Rorabeck, J. Sawhney, and M. Woolfrey, “Patient satisfaction and outcome after septic versus aseptic revision total knee arthroplasty,” Journal of Arthroplasty, vol. 15, no. 8, pp. 990–993, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Robertsson, M. Dunbar, T. Pehrsson, K. Knutson, and L. Lidgren, “Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden,” Acta Orthopaedica Scandinavica, vol. 71, no. 3, pp. 262–267, 2000. View at Scopus
  11. B. J. Manaster, “Total knee arthroplasty: postoperative radiologic findings,” American Journal of Roentgenology, vol. 165, no. 4, pp. 899–904, 1995. View at Scopus
  12. S. D. Stulberg, P. Loan, and V. Sarin, “Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients,” Journal of Bone and Joint Surgery A, vol. 84, no. 2, pp. 90–98, 2002. View at Scopus
  13. R. A. Siston, N. J. Giori, S. B. Goodman, and S. L. Delp, “Surgical navigation for total knee arthroplasty: a perspective,” Journal of Biomechanics, vol. 40, no. 4, pp. 728–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. G. Nilsson, A. Henricson, B. Norgren, and T. Dalén, “Uncemented HA-coated implant is the optimum fixation for TKA in the young patient,” Clinical Orthopaedics and Related Research, no. 448, pp. 129–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Plaskos, A. J. Hodgson, K. Inkpen, and R. W. McGraw, “Bone cutting errors in total knee arthroplasty,” Journal of Arthroplasty, vol. 17, no. 6, pp. 698–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Otani, L. A. Whiteside, and S. E. White, “Cutting errors in preparation of femoral components in total knee arthroplasty,” Journal of Arthroplasty, vol. 8, no. 5, pp. 503–510, 1993. View at Scopus
  17. R. S. Jeffery, R. W. Morris, and R. A. Denham, “Coronal alignment after total knee replacement,” Journal of Bone and Joint Surgery B, vol. 73, no. 5, pp. 709–714, 1991. View at Scopus
  18. T. L. Petersen and G. A. Engh, “Radiographic assessment of knee alignment after total knee arthroplasty,” Journal of Arthroplasty, vol. 3, no. 1, pp. 67–72, 1988. View at Scopus
  19. S. Parratte, M. W. Pagnano, R. T. Trousdale, and D. J. Berry, “Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements,” Journal of Bone and Joint Surgery A, vol. 92, no. 12, pp. 2143–2149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Matziolis, J. Adam, and C. Perka, “Varus malalignment has no influence on clinical outcome in midterm follow-up after total knee replacement,” Archives of Orthopaedic and Trauma Surgery, vol. 130, no. 12, pp. 1487–1491, 2010. View at Scopus
  21. P. F. Choong, M. M. Dowsey, and J. D. Stoney, “Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty,” Journal of Arthroplasty, vol. 24, no. 4, pp. 560–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Ritter, K. E. Davis, J. B. Meding, J. L. Pierson, M. E. Berend, and R. A. Malinzak, “The effect of alignment and BMI on failure of total knee replacement,” Journal of Bone and Joint Surgery A, vol. 93, no. 17, pp. 1588–1596, 2011. View at Publisher · View at Google Scholar
  23. M. A. Ritter, P. M. Faris, E. M. Keating, and J. B. Meding, “Postoperative alignment of total knee replacement: its effect on survival,” Clinical Orthopaedics and Related Research, no. 299, pp. 153–156, 1994. View at Scopus
  24. L. M. Specht, S. Levitz, R. Iorio, W. L. Healy, and J. F. Tilzey, “A comparison of acetate and digital templating for total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 464, pp. 179–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Churchill, S. J. Incavo, C. C. Johnson, and B. D. Beynnon, “The transepicondylar axis approximates the optimal flexion axis of the knee,” Clinical Orthopaedics and Related Research, no. 356, pp. 111–118, 1998. View at Scopus
  26. M. C. Miller, R. A. Berger, A. J. Petrella, A. Karmas, and H. E. Rubash, “The Ranawat award paper: optimizing femoral component rotation in total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 392, pp. 38–45, 2001. View at Scopus
  27. C. W. Olcott and R. D. Scott, “A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty,” Journal of Arthroplasty, vol. 15, no. 1, pp. 22–26, 2000. View at Scopus
  28. S. D. Stulberg, “How accurate is current TKR instrumentation?” Clinical Orthopaedics and Related Research, no. 416, pp. 177–184, 2003. View at Scopus
  29. H. Bäthis, L. Perlick, M. Tingart, C. Perlick, C. Lüring, and J. Grifka, “Intraoperative cutting errors in total knee arthroplasty,” Archives of Orthopaedic and Trauma Surgery, vol. 125, no. 1, pp. 16–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Börner, U. Wiesel, and W. Ditzen, “Clinical experiences with Robodoc and the Duracon total knee,” in Navigation and Robotics in Total Joint and Spine Surgery, J. B. Stiehl, W. Konermann, and R. G. Haaker, Eds., pp. 362–366, Springer, 2004.
  31. F. M. Griffin, J. N. Insall, and G. R. Scuderi, “Accuracy of soft tissue balancing in total knee arthroplasty,” Journal of Arthroplasty, vol. 15, no. 8, pp. 970–973, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Jakopec, S. J. Harris, F. Rodriguez y Baena, P. Gomes, J. Cobb, and B. L. Davies, “The first clinical application of a “hands-on” robotic knee surgery system,” Computer Aided Surgery, vol. 6, no. 6, pp. 329–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Y. Jenny and C. Boeri, “Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement,” Acta Orthopaedica Scandinavica, vol. 75, no. 1, pp. 74–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. L. M. Longstaff, K. Sloan, N. Stamp, M. Scaddan, and R. Beaver, “Good alignment after total knee arthroplasty leads to faster rehabilitation and better function,” Journal of Arthroplasty, vol. 24, no. 4, pp. 570–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. A. Lotke and M. L. Ecker, “Influence of positioning of prosthesis in total knee replacement,” Journal of Bone and Joint Surgery A, vol. 59, no. 1, pp. 77–79, 1977. View at Scopus
  36. S. E. Park and C. T. Lee, “Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty,” Journal of Arthroplasty, vol. 22, no. 7, pp. 1054–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Perillo-Marcone, D. S. Barrett, and M. Taylor, “The importance of tibial alignment: finite element analysis of tibial malalignment,” Journal of Arthroplasty, vol. 15, no. 8, pp. 1020–1027, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Rand and M. B. Coventry, “Ten-year evaluation of geometric total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 232, pp. 168–173, 1988. View at Scopus
  39. N. Sugano, A. Kakimoto, and N. Nakamura, “Robodoc total knee arthroplasty,” in Proceedings of the International Society of Hip and Knee Surgery, Indian Society of Hip and Knee Surgeons (ISHKS '08), Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, April 2008.
  40. R. H. Taylor, B. D. Mittelstadt, H. A. Paul et al., “Image-directed robotic system for precise orthopaedic surgery,” IEEE Transactions on Robotics and Automation, vol. 10, no. 3, pp. 261–275, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Tew and W. Waugh, “Tibiofemoral alignment and the results of knee replacement,” Journal of Bone and Joint Surgery B, vol. 67, no. 4, pp. 551–556, 1985. View at Scopus
  42. T. Takahashi, Y. Wada, and H. Yamamoto, “Soft-tissue balancing with pressure distribution during total knee arthroplasty,” The Journal of Bone and Joint Surgery, vol. 79B, pp. 235–239, 1997.
  43. W. Siebert, S. Mai, R. Kober, and P. F. Heeckt, “Technique and first clinical results of robot-assisted total knee replacement,” Knee, vol. 9, no. 3, pp. 173–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Bellemans, H. Vandenneucker, and J. Vanlauwe, “Robot-assisted total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 464, pp. 111–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Cobb, J. Henckel, P. Gomes et al., “Hands-on robotic unicompartmental knee replacement. A prospective, randomised controlled study of the Acrobot system,” Journal of Bone and Joint Surgery B, vol. 88, no. 2, pp. 188–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. H. Lonner, T. K. John, and M. A. Conditt, “Robotic arm-assisted UKA improves tibial component alignment: a pilot study,” Clinical Orthopaedics and Related Research, vol. 468, no. 1, pp. 141–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Pearle, “Directions for future research,” Journal of Bone and Joint Surgery A, vol. 91, supplement 1, pp. 159–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. K. Sinha, “Outcomes of robotic arm-assisted unicompartmental knee arthroplasty,” American Journal of Orthopedics, vol. 38, no. 2, supplement, pp. 20–22, 2009. View at Scopus
  49. T. Coon, M. Driscoll, and M. Conditt, “Early clinical success of novel tactile guided UKA technique,” in Proceedings of the 21st Annual Congress of the International Society for Technology in Arthroplasty, p. 141, International Society for Technology in Arthroplasty, Sacramento, Calif, USA, 2008.
  50. T. Coon, M. Driscoll, and M. Conditt, “Robotically assisted UKA is more accurate than manually instrumented UKA,” in Proceedings of the 21st Annual Congress of the International Society for Technology in Arthroplasty, p. 175, International Society for Technology in Arthroplasty, Sacramento, Calif, USA, 2008.
  51. E. K. Song, J. K. Seon, S. J. Park, W. B. Jung, H. W. Park, and G. W. Lee, “Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 7, pp. 1069–1076, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. E.-K. Song, J.-K. Seon, J.-H. Yim, N. A. Netravali, and W. L. Bargar, “Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA knee,” Clinical Orthopaedics and Related Research, vol. 471, no. 1, pp. 118–126, 2013. View at Publisher · View at Google Scholar
  53. M. A. Hafez, K. L. Chelule, B. B. Seedhom, and K. P. Sherman, “Computer-assisted total knee arthroplasty using patient-specific templating,” Clinical Orthopaedics and Related Research, no. 444, pp. 184–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Fitz, “Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs,” Journal of Bone and Joint Surgery A, vol. 91, supplement 1, pp. 69–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Picard, J. Moody, A. M. DiGioia III, and B. Jaramaz, “Clinical Classifications of CAOS Systems,” in Computer and Robotic Assisted Hip and Knee Surgery, A. M. DiGioia III, B. Jaramaz, F. Picard, and L. P. Nolte, Eds., pp. 43–48, Oxford University Press, New York, NY, USA, 2004.
  56. J. B. Mason, T. K. Fehring, R. Estok, D. Banel, and K. Fahrbach, “Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery,” Journal of Arthroplasty, vol. 22, no. 8, pp. 1097–1106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. F. A. Matsen, J. L. Garbini, J. A. Sidles, B. Pratt, D. Baumgarten, and R. Kaiura, “Robotic assistance in orthopaedic surgery: a proof of principle using distal femoral arthroplasty,” Clinical Orthopaedics and Related Research, no. 296, pp. 178–186, 1993. View at Scopus
  58. T. C. Kienzle, S. D. Stulberg, M. Peshkin et al., “A computer-assisted total knee replacement surgical system using a calibrated robot,” in Computer Integrated Surgery, R. H. Taylor, G. Burdea, and R. Mosges, Eds., pp. 409–416, The MIT Press, Cambridge, Mass, USA, 1996.
  59. G. van Ham, K. Denis, J. Vander Sloten et al., “Machining and accuracy studies for a tibial knee implant using a force-controlled robot,” Computer Aided Surgery, vol. 3, no. 3, pp. 123–133, 1998. View at Publisher · View at Google Scholar
  60. S. M. Martelli, M. Marcacci, L. Nofrini et al., “Computer- and robot-assisted total knee replacement: analysis of a new surgical procedure,” Annals of Biomedical Engineering, vol. 28, no. 9, pp. 1146–1153, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Glozman, M. Shoham, and A. Fischer, “A surface-matching technique for robot-assisted registration,” Computer Aided Surgery, vol. 6, no. 5, pp. 259–269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. P. F. La Palombara, M. Fadda, S. Martelli, and M. Marcacci, “Minimally invasive 3D data registration in computer and robot assisted total knee arthroplasty,” Medical & Biological Engineering & Computing, vol. 35, pp. 600–610, 1997.
  63. M. Fadda, M. Marcacci, S. Toksvig-Larsen, T. Wang, and R. Meneghello, “Improving accuracy of bone resections using robotics tool holder and a high speed milling cutting tool,” Journal of Medical Engineering and Technology, vol. 22, no. 6, pp. 280–284, 1998. View at Scopus
  64. A. Wolf, B. Jaramaz, B. Lisien, and A. M. DiGioia, “MBARS: mini bone-attached robotic system for joint arthroplasty,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 1, no. 2, pp. 101–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Song, A. Mor, and B. Jaramaz, “HyBAR: hybrid bone-attached robot for joint arthroplasty,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, no. 2, pp. 223–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Rodriguez, S. Harris, M. Jakopec et al., “Robotic clinical trials of uni-condylar arthroplasty,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 1, no. 4, pp. 20–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. A. D. Pearle, F. Padhraig, M. D. O’Loughlin, and D. O. Kendoff, “Robot-assisted unicompartmental knee arthroplasty,” The Journal of Arthroplasty, vol. 25, no. 2, pp. 230–237, 2010.
  68. P. H. J. Bullens, C. J. M. Van Loon, M. C. De Waal Malefijt, R. F. J. M. Laan, and R. P. H. Veth, “Patient satisfaction after total knee arthroplasty: a comparison between subjective and objective outcome assessments,” Journal of Arthroplasty, vol. 16, no. 6, pp. 740–747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. P. C. Noble, M. A. Conditt, K. F. Cook, and K. B. Mathis, “The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 452, pp. 35–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Alicea, “Scoring systems and their validation for the arthritic knee,” in Surgery of the Knee, H. N. Insall and S. N. Churchill, Eds., pp. 1507–1515, Livingstone, New York, NY, USA, 3rd edition, 2001.
  71. J. N. Insall, L. D. Dorr, R. D. Scott, and W. N. Scott, “Rationale of The Knee Society clinical rating system,” Clinical Orthopaedics and Related Research, no. 248, pp. 13–14, 1989. View at Scopus
  72. N. Bellamy, W. W. Buchanan, C. H. Goldsmith, J. Campbell, and L. W. Stitt, “Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee,” Journal of Rheumatology, vol. 15, no. 12, pp. 1833–1840, 1988. View at Scopus
  73. J. Dawson, R. Fitzpatrick, D. Murray, and A. Carr, “Questionnaire on the perceptions of patients about total knee replacement,” Journal of Bone and Joint Surgery B, vol. 80, no. 1, pp. 63–69, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. A. L. Stewart, R. D. Hays, and J. E. Ware, “The MOS short-form general health survey. Reliability and validity in a patient population,” Medical Care, vol. 26, no. 7, pp. 724–735, 1988. View at Scopus
  75. J. E. Ware Jr., K. K. Snow, M. Kosinski, and B. Gandek, SF-36 Health Survey. Manual and Interpretation Guide, The Healthy Institute, New England Medical Center, Boston, Mass, USA, 1993.
  76. P. M. Bonutti, M. A. Mont, M. McMahon, P. S. Ragland, and M. Kester, “Minimally invasive total knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 86, no. 2, pp. 26–31, 2004. View at Scopus
  77. P. C. Noble, G. R. Scuderi, A. C. Brekke et al., “Development of a new Knee Society Scoring System,” Clinical Orthopaedics & Related Research, vol. 470, pp. 20–32, 2012.
  78. M. A. Conditt and M. W. Roche, “Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty,” The Journal of Bone and Joint Surgery A, vol. 91, supplement 1, pp. 63–68, 2009.
  79. Y. S. Chun, K. I. Kim, Y. J. Cho, Y. H. Kim, M. C. Yoo, and K. H. Rhyu, “Causes and patterns of aborting robot-assisted arthroplasty,” Journal of Arthroplasty, vol. 26, no. 4, pp. 621–625, 2011. View at Publisher · View at Google Scholar · View at Scopus