About this Journal Submit a Manuscript Table of Contents
Advances in Optical Technologies
Volume 2012 (2012), Article ID 754546, 11 pages
http://dx.doi.org/10.1155/2012/754546
Review Article

High-Quality Growth of GaInNAs for Application to Near-Infrared Laser Diodes

Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Received 27 June 2012; Accepted 4 September 2012

Academic Editor: Marija Strojnik

Copyright © 2012 Masahiko Kondow and Fumitaro Ishikawa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “A novel material of GaInNAs for long-wavelength-range laser diodes with excellent high-temperature performance,” in Proceedings of the International Conference on Solid State Devices and Materials, Osaka, Japan, 1995.
  2. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance,” Japanese Journal of Applied Physics 1, vol. 35, no. 2, pp. 1273–1275, 1996. View at Scopus
  3. J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearch, and C. Heigh:, “Luminescence quenching and the formation of the GaP1xNx alloy in GaP with increasing nitrogen content,” Applied Physics Letters, vol. 60, article 2540, 3 pages, 1992.
  4. O. Igarashi, “Heteroepitaxial growth of GaP1xNx(x0.09) on sapphire substrates,” Japanese Journal of Applied Physics, vol. 31, article 3791, 1992.
  5. S. Miyoshi, H. Yaguchi, K. Onabe, R. Ito, and Y. Shiraki, “Metalorganic vapor phase epitaxy of GaP1xNx alloys on GaP,” Applied Physics Letters, vol. 63, no. 25, pp. 3506–3508, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sato and M. Weyers, “GaAsN alloys: growth and optical properties,” in Proceedings of the 19th International Symposium on GaAs and Related Compound Semiconductors, vol. 129 of Institute of Physics Conference, pp. 555–560, Bristol and Philadelphia: Institute of Physics, Karuizawa, Japan, 1992.
  7. M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1x using a N radical as the N source,” Japanese Journal of Applied Physics 2, vol. 33, no. 8, pp. L1056–L1058, 1994. View at Scopus
  8. S. Sato, “Room temperature operation of InGaNAs/InGaP DH lasers grown by MOCVD,” in Proceedings of the 57th Autumn Meeting Japan Society of Applied Physics, p. 951, Fukuoka, Japan, 1996.
  9. M. Kondow, T. Kitatani, M. C. Larson, K. Nakahara, K. Uomi, and H. Inoue, “Gas-source MBE of GaInNAs for long-wavelength laser diodes,” Journal of Crystal Growth, vol. 188, no. 1–4, pp. 255–259, 1998. View at Scopus
  10. S. Sakai, Y. Ueta, and Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrogen and boron,” Japanese Journal of Applied Physics 1, vol. 32, no. 10, pp. 4413–4417, 1993. View at Scopus
  11. J. C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York, NY, USA, 1973.
  12. T. Kitatanl, M. Kondow, T. Klkawa, Y. Yazawa, M. Okai, and K. Uomi, “Analysis of band offset in GaNAs/GaAs by x-ray photoelectron spectroscopy,” Japanese Journal of Applied Physics 1, vol. 38, no. 9, pp. 5003–5006, 1999. View at Scopus
  13. S. A. Ding, S. R. Barman, K. Horn et al., “Valence band discontinuity at a cubic GaN/GaAs heterojunction measured by synchrotron-radiation photoemission spectroscopy,” Applied Physics Letters, vol. 70, no. 18, pp. 2407–2409, 1997. View at Scopus
  14. S. Sakai and T. Abe, “Band lineup of nitride-alloy heterostructures,” in Proceedings of the 41st Spring Meeting of the Japan Society of Applied Physics, p. 186, Tokyo, Japan, 1994.
  15. M. Kondow, S. Fujisaki, S. Shirakata, T. Ikari, and T. Kitatani, “Electron effective mass of Ga0. 7In0. 3NxAs1x,” in Proceedings of the 30th International Symposium on Compound Semiconductors, MB 3.8, San Diego, Calif, USA, 2003.
  16. C. Skierbiszewski, P. Perlin, P. Wisniewski et al., “Effect of nitrogen-induced modification of the conduction band structure on electron transport in GaAsN alloys,” Physica Status Solidi B, vol. 216, no. 1, pp. 135–139, 1999. View at Scopus
  17. Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, D. S. Jiang, and W. K. Ge, “Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structures with low nitrogen concentration,” Applied Physics Letters, vol. 78, no. 15, pp. 2217–2219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hetterich, M. D. Dawson, A. Y. Egorov, D. Bernklau, and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Applied Physics Letters, vol. 76, no. 8, pp. 1030–1032, 2000. View at Scopus
  19. M. C. Larson, M. Kondow, T. Kitatani et al., “GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technology Letters, vol. 10, no. 2, pp. 188–190, 1998. View at Scopus
  20. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “A 1.3-μm GaInNAs laser diode with a lifetime of over 1000 hours,” Japanese Journal of Applied Physics 2, vol. 38, no. 12, pp. L1355–L1356, 1999. View at Scopus
  21. J. Jewell, L. Graham, M. Crom et al., “Commercial GaInNAs VCSELs grown by MBE,” Physica Status Solidi C, vol. 5, no. 9, pp. 2951–2956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Buyanova and W. Chen, Physics and Applications of Dilute Nitrides, Taylor & Francis, New York, NY, USA, 2004.
  23. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers,” Applied Physics Letters, vol. 83, no. 13, pp. 2512–2514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Wang, Y. Q. Wei, X. D. Wang, Q. X. Zhao, M. Sadeghi, and A. Larsson, “Very low threshold current density 1.3 μm GaInNAs single-quantum well lasers grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 278, no. 1–4, pp. 734–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Fehse, S. Jin, S. J. Sweeney et al., “Evidence for large monomolecular recombination contribution to threshold current in 1.3 μm GaInNAs semiconductor lasers,” Electronics Letters, vol. 37, no. 25, pp. 1518–1520, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Nakatsuka, M. Kondow, M. Aoki, M. Kudo, T. Kitatani, and S. Tsuji, “Amplified spontaneous emission measurement of GaInNAs laser wafers with and without rapid thermal annealing,” Japanese Journal of Applied Physics 2, vol. 42, no. 8, pp. L1012–L1014, 2003. View at Scopus
  27. T. Takeuchi, Y. L. Chang, M. Leary et al., “Al contamination in InGaAsN quantum wells grown by metalorganic chemical vapor deposition and 1.3 μm InGaAsN vertical cavity surface emitting lasers,” Japanese Journal of Applied Physics 1, vol. 43, no. 4, pp. 1260–1263, 2004. View at Scopus
  28. T. Takahashi, M. Kaminishi, N. Jikutani, A. Itoh, and S. Sato, “Improvement of the optical property of 1 step MOCVD grown GaInNAs/GaAs MQW on AlGaAs cladding layer,” in Procedings of the 64th Autumn Meeting of the Japan Society of Applied Physics, 1p-K-18, Fukuoka, Japan, 2003.
  29. P. Sundgren, C. Asplund, K. Baskar, and M. Hammar, “Morphological instability of GaInNAs quantum wells on Al-containing layers grown by metalorganic vapor-phase epitaxy,” Applied Physics Letters, vol. 82, no. 15, pp. 2431–2433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kondow, M. Kudo, S. Tanaka, S. Fujisaki, and K. Nakahara, “Residual impurities in MBE-grown GaInNAs laser diodes,” in Proceedings of the 13th International Conference on Molecular Beam Epitaxy, TuC2.5, Edinburgh, UK, 2004.
  31. T. Kitatani, M. Kondow, and T. Tanaka, “Molecular beam epitaxy of GaInNAs by using solid source arsenic,” Journal of Crystal Growth, vol. 227-228, pp. 521–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Ishikawa, S. D. Wu, M. Kato, M. Uchiyama, K. Higashi, and M. Kondow, “Unintentional aluminum incorporation related to the introduction of nitrogen gas during the plasma-assisted molecular beam epitaxy,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1646–1649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Ishikawa, S. Wu, M. Kato, M. Uchiyama, K. Higashi, and M. Kondow, “Unintentional source incorporation in plasma-assisted molecular beam epitaxy,” Japanese Journal of Applied Physics, vol. 48, no. 12, Article ID 125501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Schmitz, J. Wagner, M. Maier, H. Obloh, P. Koidl, and J. D. Ralston, “Unintentional As incorporation in molecular beam epitaxially grown InAs/AlSb/GaSb heterostructures,” Journal of Electronic Materials, vol. 23, no. 11, pp. 1203–1207, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. C. E. C. Wood, T. M. Kerr, T. D. McLean et al., “State-of-the-art AlGaAs alloys by antimony doping,” Journal of Applied Physics, vol. 60, no. 4, pp. 1300–1305, 1986. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Adachi, K. Nakahara, J. Kasai et al., “Low-threshold GaInNAs single-quantum-well lasers with emission wavelength over 1.3μm,” Electronics Letters, vol. 42, no. 23, pp. 1354–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. Bank, H. Bae, L. L. Goddard et al., “Recent progress on 1.55-μm dilute-nitride lasers,” IEEE Journal of Quantum Electronics, vol. 43, no. 9, pp. 773–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Wistey, S. R. Bank, H. B. Yuen, L. L. Goddard, and J. S. Harris, “GaInNAs(Sb) vertical-cavity surface-emitting lasers at 1.460 μm,” Journal of Vacuum Science and Technology B, vol. 22, no. 3, pp. 1562–1564, 2004. View at Scopus