About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 157484, 11 pages
http://dx.doi.org/10.1155/2011/157484
Research Article

Synthesis, Characterization, and Electrochemical Study of Tetradentate Ruthenium-Schiff Base Complexes: Dioxygen Activation with a Cytochrome P450 Model Using 1- or 2-Methylimidazole as Axial Bases

1Laboratoire d'Électrochimie, d'Ingénierie Moléculaire et de Catalyse Rédox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Ferhat Abbas, Sétif 19000, Algeria
2SONAS, EA 921, Faculté de Pharmacie, Université d’Angers 16 Boulevard Daviers, 49045 Angers Cedex 01, France

Received 18 September 2010; Revised 21 December 2010; Accepted 22 March 2011

Academic Editor: Milan M. Jaksic

Copyright © 2011 Ali Ourari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Schiff, “Sur quelques dérivés phéniques des aldéhydes,” Ann. Chim. (Paris), vol. 131, p. 118, 1864.
  2. L. Canali and D. C. Sherrington, “Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis,” Chemical Society Reviews, vol. 28, no. 2, pp. 85–93, 1999. View at Scopus
  3. E. N. Jacobsen, “Asymmetric catalysis of epoxide ring-opening reactions,” Accounts of Chemical Research, vol. 33, no. 6, pp. 421–431, 2000. View at Publisher · View at Google Scholar
  4. T. Katsuki, “Catalytic asymmetric oxidations using optically active (salen) manganese (III) complexes as catalysts,” Coordination Chemistry Reviews, vol. 140, pp. 189–214, 1995.
  5. D. A. Atwood and M. J. Harvey, “Group 13 compounds incorporating Salen ligands,” Chemical Reviews, vol. 101, no. 1, pp. 37–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. T. Khan, S. H. Mehta, A. P. Rao, and K. N. Bhatt, “Electrocatalytic oxidation of organic substrates with oxygen using ruthenium-Schiff base complex,” Journal of Molecular Catalysis, vol. 75, no. 3, pp. 245–251, 1992. View at Scopus
  7. WA. H. Leung and C. M. Che, “Oxidation chemistry of ruthenium-salen complexes,” Inorganic Chemistry, vol. 28, no. 26, pp. 4619–4622, 1989. View at Scopus
  8. S. E. Creager, S. A. Raybuck, and R. W. Murray, “An efficient electrocatalytic model cytochrome P-450 epoxidation cycle,” Journal of the American Chemical Society, vol. 108, no. 14, pp. 4225–4227, 1986. View at Scopus
  9. A. A. Isse, A. Gennaro, E. Vianello, and C. Floriani, “Electrochemical reduction of carbon dioxide catalyzed by [CoI(salophen)Li],” Journal of Molecular Catalysis, vol. 70, no. 2, pp. 197–208, 1991. View at Publisher · View at Google Scholar
  10. S. F. Tan, P. H. Leung, and W. C. Sin, “Catalytic autooxidation of p-anisaldehyde and styrene by a cobalt bis-schiff base complex,” Transition Metal Chemistry, vol. 16, no. 5, pp. 542–545, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Collman, T. R. Halbert, K. S. Suslick, and T. Spiro, Eds., Metal Ion Activation of Dioxygen, Wiley Interscience, New York, NY, USA, 1980.
  12. I. G. Denisov, T. M. Makris, S. G. Sligar, and I. Schlichting, “Structure and chemistry of cytochrome P450,” Chemical Reviews, vol. 105, no. 6, pp. 2253–2277, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. I. C. Gunsalus, T. C. Pederson, and S. G. Sligar, “Oxygenase-catalyzed biological hydroxylations,” Annual Review of Biochemistry, vol. 44, pp. 377–407, 1975. View at Scopus
  14. R. I. Kureshy, N. H. Khan, S. H. R. Abdi, and P. Iyer, “Chiral Ru(III) metal complex-catalyzed aerobic enantioselective epoxidation of styrene derivatives with co-oxidation of aldehyde,” Journal of Molecular Catalysis A, vol. 124, no. 2-3, pp. 91–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. W. H. Leung and C. M. Che, “Oxidation chemistry of ruthenium-salen complexes,” Inorganic Chemistry, vol. 28, no. 26, pp. 4619–4622, 1989. View at Scopus
  16. A. M. El-Hendawy, A. H. Alkubaisi, A. E. G. El-Kourashy, and M. M. Shanab, “Ruthenium(II) Complexes of O,N-donor Schiff base ligands and their use as catalytic organic oxidants,” Polyhedron, vol. 12, no. 19, pp. 2343–2350, 1993. View at Scopus
  17. L. Salmon, C. Bied-Charreton, A. Gaudemer, P. Moisy, F. Bedioui, and J. Devynck, “Structural studies of metalloporphyrins. 9. “Looping-over” cobalt porphyrins: coordinating properties and application to dioxygen fixation and activation,” Inorganic Chemistry, vol. 29, no. 15, pp. 2734–2740, 1990. View at Scopus
  18. L. Gaillon, N. Sajot, F. Bedioui, J. Devynck, and K. J. Balkus, “Electrochemistry of zeolite-encapsulated complexes. Part 3. Characterization of iron and manganese SALEN entrapped in Y faujasite type zeolite,” Journal of Electroanalytical Chemistry, vol. 345, no. 1-2, pp. 157–167, 1993. View at Scopus
  19. H. Nishihara, K. Pressprich, R. W. Murray, and J. P. Collman, “Electrochemical olefin epoxidation with manganese meso-tetraphenylporphyrin catalyst and hydrogen peroxide generation at polymer-coated electrodes,” Inorganic Chemistry, vol. 29, no. 5, pp. 1000–1006, 1990. View at Scopus
  20. S. F. Tan, P. H. Leung, and W. C. Sin, “Catalytic autooxidation of p-anisaldehyde and styrene by a cobalt bis-schiff base complex,” Transition Metal Chemistry, vol. 16, no. 5, pp. 542–545, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. C. P. Horwitz, S. E. Creager, and R. W. Murray, “Electrocatalytic olefin epoxidation using manganese Schiff-base complexes and dioxygen,” Inorganic Chemistry, vol. 29, no. 5, pp. 1006–1011, 1990. View at Scopus
  22. J. C. Moutet and A. Ourari, “Electrocatalytic epoxidation and oxidation with dioxygen using manganese(III) Schiff-base complexes,” Electrochimica Acta, vol. 42, no. 16, pp. 2525–2531, 1997. View at Scopus
  23. “Etude de deux réactions d’électrocatalyse: Hydrogénation électrocatalytique sur des films de polymères contenant des microparticules de métaux nobles et activation de l’oxygène moléculaire par des complexes de bases de Schiff,” , Ph.D. thesis, Joseph Fourrier University, Genoble, France, 1995.
  24. A. Pui, I. Berdan, I. Morgenstern-Badarau, A. Gref, and M. Perrée-Fauvet, “Electrochemical and spectroscopic characterization of new cobalt(II) complexes. Catalytic activity in oxidation reactions by molecular oxygen,” Inorganica Chimica Acta, vol. 320, no. 1-2, pp. 167–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Cameron and S. C. Turner, “Electrochemically controlled dissociation of dioxygen from a μ-peroxo cobalt(III) dimer,” Journal of the Chemical Society, Dalton Transactions, no. 23, pp. 3285–3289, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. T. Khan, S. H. Mehta, A. P. Rao, and K. N. Bhatt, “Electrocatalytic oxidation of organic substrates with oxygen using ruthenium-Schiff base complex,” Journal of Molecular Catalysis, vol. 75, no. 3, pp. 245–251, 1992. View at Scopus
  27. R. M. Wang, C. J. Hao, Y. P. Wang, and S. B. Li, “Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen,” Journal of Molecular Catalysis A, vol. 147, no. 1-2, pp. 173–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Kwiatkowski, G. Romanowski, W. Nowicki, M. Kwiatkowski, and K. Suwińska, “Dioxovanadium(V) Schiff base complexes of N-methyl-1,2-diaminoethane and 2-methyl-1,2-diaminopropane with aromatic o-hydroxyaldehydes and o-hydroxyketones: synthesis, characterisation, catalytic properties and structure,” Polyhedron, vol. 22, no. 7, pp. 1009–1018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. D. D. Agarwal, R. P. Bhatnagar, R. Jain, and S. Srivastava, “Epoxidation of olefins catalysed by Fe(III) Schiff base complexes as catalyst,” Journal of Molecular Catalysis, vol. 59, no. 3, pp. 385–395, 1990. View at Scopus
  30. B. Fisher and R. Eisenberg, “Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt,” Journal of the American Chemical Society, vol. 102, no. 24, pp. 7361–7363, 1980. View at Scopus
  31. C. E. Dahm and D. G. Peters, “Catalytic reduction of iodoethane and 2-iodopropane at carbon electrodes coated with anodically polymerized films of nickel(II) salen,” Analytical Chemistry, vol. 66, no. 19, pp. 3117–3123, 1994. View at Scopus
  32. C. E. Dahm and D. G. Peters, “Catalytic reduction of α,ω-dihaloalkanes with nickel(I) salen as a homogeneous-phase and polymer-bound mediator,” Journal of Electroanalytical Chemistry, vol. 406, no. 1-2, pp. 119–129, 1996. View at Scopus
  33. R. Zhang, J. Ma, W. Wang, B. Wang, and R. Li, “Zeolite-encapsulated M(Co, Fe, Mn)(SALEN) complexes modified glassy carbon electrodes and their application in oxygen reduction,” Journal of Electroanalytical Chemistry, vol. 643, no. 1-2, pp. 31–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Tyagi, B. Shaik, and H. C. Bajaj, “Epoxidation of styrene with molecular O2 over sulfated Y-ZrO2 based solid catalysts,” Applied Catalysis A, vol. 383, no. 1-2, pp. 161–168, 2010. View at Publisher · View at Google Scholar
  35. P. Guo and K. Y. Wong, “Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes,” Electrochemistry Communications, vol. 1, no. 11, pp. 559–563, 1999. View at Scopus
  36. F. Bedioui, E. De Boysson, J. Devynck, and K. J. Balkus, “Electrochemistry of zeolite-encapsulated cobalt salen complexes in acetonitrile and dimethyl sulphoxide solutions,” Journal of the Chemical Society, Faraday Transactions, vol. 87, no. 24, pp. 3831–3834, 1991. View at Publisher · View at Google Scholar · View at Scopus
  37. G. N. Vyas and N. M. Shah, “Quinacetophenone monomethyl ether,” Organic Syntheses, Coll., vol. 4, p. 886, 1963.
  38. A. Anthonysamy and S. Balasubramanian, “Synthesis, spectral, thermal and electrochemical studies of nickel (II) complexes with NO donor ligands,” Inorganic Chemistry Communications, vol. 8, no. 10, pp. 908–911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Yuasa, T. Nagaiwa, M. Kato, I. Sekine, and S. Hayashi, “Electrochemical properties of metalloporphyrin-clay complex-modified electrode systems: investigation as oxygen sensors,” Journal of the Electrochemical Society, vol. 142, no. 8, pp. 2612–2617, 1995. View at Scopus
  40. I. Sasaki, D. Pujol, and A. Gaudemer, “Non-symmetric Schiff base Co(II) complexes. Synthesis and catalytic activity in the oxidation of 2,6-Di-tert-butylphenol by molecular oxygen,” Inorganica Chimica Acta, vol. 134, no. 1, pp. 53–57, 1987. View at Scopus
  41. Y. W. Liou and C. M. Wang, “Peroxidase mimicking: Fe(Salen)Cl modified electrodes, fundamental properties and applications for biosensing,” Journal of Electroanalytical Chemistry, vol. 481, no. 1, pp. 102–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Losada, I. del Peso, L. Beyer, J. Hartung, V. Fernández, and M. Möbius, “Electrocatalytic reduction of O and CO with electropolymerized films of polypyrrole cobalt(II) Schiff-base complexes,” Journal of Electroanalytical Chemistry, vol. 398, no. 1-2, pp. 89–93, 1995. View at Scopus
  43. P. N. Barlett and J. M. Cooper, “A review of the immobilization of enzymes in electropolymerized films,” Journal of Electroanalytical Chemistry, vol. 362, no. 1-2, pp. 1–12, 1993. View at Scopus
  44. W. Schuhmann, “Conducting polymer based amperometric enzyme electrodes,” Mikrochimica Acta, vol. 121, no. 1–4, pp. 1–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Cosnier, A. Lepellec, B. Guidetti, and I. Rico-Lattes, “Enhancement of biosensor sensitivity in aqueous and organic solvents usinga combination of poly(pyrrole-ammonium) and poly(pyrrole-lactobionamide) filmsas host matrices,” Journal of Electroanalytical Chemistry, vol. 449, no. 1-2, pp. 165–171, 1998. View at Scopus
  46. G. Cauquis, S. Cosnier, A. Deronzier et al., “Poly(pyrrole-manganese porphyrin): a catalytic electrode material as a model system for olefin epoxidation and drug metabolism with molecular oxygen,” Journal of Electroanalytical Chemistry, vol. 352, no. 1-2, pp. 181–195, 1993. View at Scopus
  47. M. M. Taqui Khan, N. H. Khan, R. I. Kureshy, A. B. Boricha, and Z. A. Shaikh, “Synthesis, characterisation, oxygenation and carbonylation of ruthenium(III) schiff base complexes,” Inorganica Chimica Acta, vol. 170, no. 2, pp. 213–223, 1990.
  48. T. Katsuki, “Some recent advances in metallosalen chemistry,” Synlett, no. 3, pp. 281–297, 2003.
  49. P. G. Cozzi, “Metal-Salen Schiff base complexes in catalysis: practical aspects,” Chemical Society Reviews, vol. 33, no. 7, pp. 410–421, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. J. Sanmartín, M. R. Bermejo, A. M. Garía-Deibe, M. Maneiro, C. Lage, and A. J. Costa-Filho, “Mono- and polynuclear complexes of Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with N,N'-bis(3-hydroxysalicylidene)-1,3-diamino-2-propanol,” Polyhedron, vol. 19, no. 2, pp. 185–192, 2000.
  51. P. Gili, M. G. Martin Reyes, P. Martin Zarza et al., “Synthesis, spectroscopic, magnetic and electrochemical properties of Cu(II) and Fe(III) complexes with the new ligand N,N′-[1,1′-dithiobis (phenyl)]bis (5′-methoxysalicylaldimine),” Inorganica Chimica Acta, vol. 244, no. 1, pp. 25–36, 1996. View at Publisher · View at Google Scholar
  52. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, UK, 3rd edition, 1975.
  53. P. Gili, M. G. Martín Reyes, P. Martín Zarza, M. F. C. Guedes Da Silva, Y. Y. Tong, and A. J. L. Pombeiro, “Complexes of Mn(II) and Mn(III) with the Schiff base N-[2-(3-ethylindole)]pyridoxaldimine. Electrochemical study of these and related Ni(II) and Cu(II) complexes,” Inorganica Chimica Acta, vol. 255, no. 2, pp. 279–288, 1997.
  54. A. Vogt, S. Wołowiec, R. L. Prasad, A. Gupta, and J. Skarzewski, “Synthesis and characterization of nickel(II), copper(II), manganese(III) and iron(III) complexes with new chiral salen-type ligand {N,N′-bis(3,5-di-tert-butylsalicylidene)-(1R,3S)-1,3-diamine-1,2,2- trimethylcyclopentane},” Polyhedron, vol. 17, no. 8, pp. 1231–1240, 1998.
  55. Z. Cimerman, N. Galic, and B. Bosner, “The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents,” Analytica Chimica Acta, vol. 343, no. 1-2, pp. 145–153, 1997. View at Publisher · View at Google Scholar
  56. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, London, UK, 2nd edition, 1992.
  57. S. Djebbar-Sid, O. Benali-Baitich, and J. P. Deloume, “Synthesis, characterization and electrochemical behaviour of cobalt(II) and cobalt(III):O complexes, respectively, with linear and tripodal tetradentate ligands derived from Schiff bases,” Journal of Molecular Structure, vol. 569, no. 1-3, pp. 121–128, 2001. View at Publisher · View at Google Scholar
  58. T. W. Hambley, C. J. Hawkins, and T. A. Kabanos, “Synthetic, structural, and physical studies of tris(2,4-pentanedionato)vanadium(IV) hexachloroantimonate(V) and tris(1-phenyl-1,3-butanedionato)vanadium(IV) hexachloroantimonate(V),” Inorganic Chemistry, vol. 26, no. 22, pp. 3740–3745, 1987.
  59. C. J. Hawkins and T. A. Kabanos, “Synthesis and characterization of (catecholato)bis(β-diketonato)vanadium(IV) complexes,” Inorganic Chemistry, vol. 28, no. 6, pp. 1084–1087, 1989.
  60. D. T. Sawyer, M. J. Gibian, M. M. Morrison, and E. T. Seo, “On the chemical reactivity of superoxide ion,” Journal of the American Chemical Society, vol. 100, no. 2, pp. 627–628, 1978.
  61. R. S. Nicholson and I. Shain, “Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems,” Analytical Chemistry, vol. 36, no. 4, pp. 706–723, 1964.
  62. C. Evans, G. J. Harfoot, J. S. McIndoe et al., “The preparation and characterisation of monomeric and linked metal carbonyl clusters containing the closo-SiCo pseudo-octahedral core,” Journal of the Chemical Society. Dalton Transactions, no. 24, pp. 4678–4683, 2002.
  63. A. Ourari, K. Ouari, M. A. Khan, and G. Bouet, “Dioxygen activation with a cytochrome P450 model. Characterization and electrochemical study of new unsymmetrical tetradentate Schiff-base complexes with iron(III) and cobalt(II),” Journal of Coordination Chemistry, vol. 61, no. 23, pp. 3846–3859, 2008. View at Publisher · View at Google Scholar
  64. J. P. Collman, M. Marrocco, P. Denisevich, C. Koval, and F. C. Anson, “Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes,” Journal of Electroanalytical Chemistry, vol. 101, no. 1, pp. 117–122, 1979.
  65. J. P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval, and F. C. Anson, “Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins,” Journal of the American Chemical Society, vol. 102, no. 19, pp. 6027–6036, 1980.
  66. R. R. Durand, C. S. Bencosme, J. P. Collman, and F. C. Anson, “Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins,” Journal of the American Chemical Society, vol. 105, no. 9, pp. 2710–2718, 1983.
  67. H. Y. Liu, I. Abdalmuhdi, C. K. Chang, and F. C. Anson, “Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin,” Journal of Physical Chemistry, vol. 89, no. 4, pp. 665–670, 1985.
  68. H. Y. Liu, M. J. Weaver, C. B. Wang, and C. K. Chang, “Dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure,” Journal of Electroanalytical Chemistry, vol. 145, no. 2, pp. 439–447, 1983.
  69. C. K. Chang, H. Y. Liu, and I. Abdalmuhdi, “Electroreduction of oxygen by pillared cobalt cofacial diporphyrin catalysts,” Journal of the American Chemical Society, vol. 106, no. 9, pp. 2725–2726, 1984.
  70. K. M. Kadish, C. Araullo-McAdams, B. C. Han, and M. M. Franzen, “Syntheses and spectroscopic characterization of (T(P-MeN)FPP)H and (7(p-MeN)FPP)M where 7(p-MeN)FPP is the dianion of meso-tetrakis(o,o,w,w-tetrafluoro-p-(dimethylamino)phenyl)-porphyrin and M = Co(II), Cu(II), or Ni(II),” Journal of the American Chemical Society, vol. 112, no. 23, pp. 8364–8368, 1990.
  71. T. G. Traylor, Y. S. Byun, P. S. Traylor, P. Battioni, and D. Mansuy, “Polymeric polyhalogeneted metallopophyrin catalysts for hydroxylation of alkanes and epoxidation of alkenes,” Journal of the American Chemical Society, vol. 113, no. 20, pp. 7821–7823, 1991.
  72. P. K. S. Tsang and D. T. Sawyer, “Electron-transfer thermodynamics and bonding for the superoxide (O), dioxygen (O), and hydroxyl (OH) adducts of (tetrakis(2,6-dichlorophenyl)porphinato)iron, -manganese, and -cobalt in dimethylformamide,” Inorganic Chemistry, vol. 29, no. 15, pp. 2848–2855, 1990.