About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 252591, 11 pages
http://dx.doi.org/10.1155/2011/252591
Research Article

Multiscale Modeling of Au-Island Ripening on Au(100)

Institut für Elektrochemie, Universität Ulm, Albert-Einstein-Alle 47, 89069 Ulm, Germany

Received 6 June 2011; Revised 31 October 2011; Accepted 14 November 2011

Academic Editor: Gianluigi Botton

Copyright © 2011 Karin Kleiner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Rosenfeld, K. Morgenstern, and G. Comsa, “Diffusion and stability of large clusters on crystal surfaces,” in Surface Diffusion: Atomistic and Collective Processes, M. C. Tringides, Ed., pp. 361–377, Plenum Press, New York, NY, USA, 1997.
  2. A. G. Naumovets and Z. Zhang, “Fidgety particles on surfaces: how do they jump, walk, group, and settle in virgin areas?” Surface Science, vol. 500, no. 1–3, pp. 414–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Bassett and P. R. Webber, “Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces,” Surface Science, vol. 70, no. 1, pp. 520–531, 1978. View at Scopus
  4. P. J. Feibelman, “Diffusion path for an Al adatom on Al(001),” Physical Review Letters, vol. 65, no. 6, pp. 729–732, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. B. D. Yu and M. Scheffler, “Physical origin of exchange diffusion on fcc(100) metal surfaces,” Physical Review B, vol. 56, no. 24, pp. R15569–R15572, 1997.
  6. J. E. Müller and H. Ibach, “Migration of point defects at charged Cu, Ag, and Au (100) surfaces,” Physical Review B, vol. 74, no. 8, article 085408, 2006. View at Publisher · View at Google Scholar
  7. C. M. Chang and C. M. Wei, “Self-diffusion of adatoms and dimers on fcc(100) surfaces,” Chinese Journal of Physics, vol. 43, no. 1 II, pp. 169–175, 2005.
  8. R. Stumpf and M. Scheffler, “Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth,” Physical Review B, vol. 53, no. 8, pp. 4958–4973, 1996. View at Scopus
  9. H. M. Polatoglou, M. Methfessel, and M. Scheffler, “Vacancy-formation energies at the (111) surface and in bulk Al, Cu, Ag, and Rh,” Physical Review B, vol. 48, no. 3, pp. 1877–1883, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Boisvert, L. J. Lewis, M. J. Puska, and R. M. Nieminen, “Energetics of diffusion on the (100) and (111) surfaces of Ag, Au, and Ir from first principles,” Physical Review B, vol. 52, no. 12, pp. 9078–9085, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Boisvert and L. J. Lewis, “Self-diffusion of adatoms, dimers, and vacancies on Cu(100),” Physical Review B, vol. 56, no. 12, pp. 7643–7655, 1997. View at Scopus
  12. G. Boisvert, L. J. Lewis, and M. Scheffler, “Island morphology and adatom self-diffusion on Pt(111),” Physical Review B, vol. 57, no. 3, pp. 1881–1889, 1998. View at Scopus
  13. C. Lee, G. T. Barkema, M. Breeman, A. Pasquarello, and R. Car, “Diffusion mechanism of Cu adatoms on a Cu(001) surface,” Surface Science, vol. 306, no. 3, pp. L575–L578, 1994. View at Scopus
  14. M. Giesen, “Step and island dynamics at solid/vacuum and solid/liquid interfaces,” Progress in Surface Science, vol. 68, no. 1–3, pp. 1–153, 2001. View at Publisher · View at Google Scholar
  15. G. A. Somorjai and M. A. Van Hove, “Adsorbate-induced restructuring of surfaces,” Progress in Surface Science, vol. 30, no. 3-4, pp. 201–231, 1989. View at Scopus
  16. D. M. Kolb, “Reconstruction phenomena at metal-electrolyte interfaces,” Progress in Surface Science, vol. 51, no. 2, pp. 109–173, 1996. View at Publisher · View at Google Scholar
  17. T. Jacob, “Potential-induced lifting of the Au(100)-surface reconstruction studied with DFT,” Electrochimica Acta, vol. 52, no. 6, pp. 2229–2235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Venkatachalam, P. Kaghazchi, L. A. Kibler, D. M. Kolb, and T. Jacob, “First principles studies of the potential-induced lifting of the Au(100) surface reconstruction,” Chemical Physics Letters, vol. 455, no. 1–3, pp. 47–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Pötting, W. Schmickler, and T. Jacob, “Self-diffusion on Au(100): a density functional theory study,” ChemPhysChem, vol. 11, no. 7, pp. 1395–1404, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Rosenfeld, Habilitation Thesis, University of Bonn, 1998.
  21. J. A. Keith, D. Fantauzzi, T. Jacob, and A. C. T. Van Duin, “Reactive forcefield for simulating gold surfaces and nanoparticles,” Physical Review B, vol. 81, no. 23, Article ID 235404, 2010. View at Publisher · View at Google Scholar
  22. E. W. Hansen and M. Neurock, “First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd,” Journal of Catalysis, vol. 196, no. 2, pp. 241–252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. O. Ojwang, S. Chaudhuri, A. C. T. Van Duin et al., “Multiscale modeling of interaction of alane clusters on Al(111) surfaces: a reactive force field and infrared absorption spectroscopy approach,” Journal of Chemical Physics, vol. 132, no. 8, Article ID 084509, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. T. Verstraelen, B. M. Szyja, D. Lesthaeghe et al., “Multi-level modeling of silica-template interactions during initial stages of zeolite synthesis,” Topics in Catalysis, vol. 52, no. 9, pp. 1261–1271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Goddard, B. Merinov, A. Van Duin et al., “Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes,” Molecular Simulation, vol. 32, no. 3-4, pp. 251–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Ala-Nissila, R. Ferrando, and S. C. Ying, “Collective and single particle diffusion on surfaces,” Advances in Physics, vol. 51, no. 3, pp. 949–1078, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Günther, E. Kopatzki, M. C. Bartelt, J. W. Evans, and R. J. Behm, “Anisotropy in nucleation and growth of two-dimensional islands during homoepitaxy on “hex” Reconstructed Au(100),” Physical Review Letters, vol. 73, no. 4, pp. 553–556, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: a reactive force field for hydrocarbons,” Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9396–9409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. C. T. van Duin, Computational Methods in Catalysis and Materials Science, Wiley-VCH, Weinheim, Germany, 2009.
  30. K. D. Nielson, A. C. T. Van Duin, J. Oxgaard, W. Q. Deng, and W. A. Goddard, “Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes,” Journal of Physical Chemistry A, vol. 109, no. 3, pp. 493–499, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems,” Physical Review B, vol. 39, no. 8, pp. 5566–5568, 1989. View at Publisher · View at Google Scholar · View at Scopus
  32. D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Physical Review B, vol. 42, no. 15, pp. 9458–9471, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Pauling, “Atomic radii and interatomic distances in metals,” Journal of the American Chemical Society, vol. 69, no. 3, pp. 542–553, 1947. View at Scopus
  34. M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Physical Review Letters, vol. 50, no. 17, pp. 1285–1288, 1983. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Daw and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, vol. 29, no. 12, pp. 6443–6453, 1984. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Physical Review B, vol. 33, no. 12, pp. 7983–7991, 1986. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Physical Review B, vol. 37, no. 17, p. 10378, 1988. View at Publisher · View at Google Scholar · View at Scopus
  38. M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Physical Review B, vol. 46, no. 5, pp. 2727–2742, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. C. J. Casewit, K. S. Colwell, and A. K. Rappé, “Application of a Universal force field to organic molecules,” Journal of the American Chemical Society, vol. 114, no. 25, pp. 10035–10046, 1992. View at Scopus
  40. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations,” Journal of the American Chemical Society, vol. 114, no. 25, pp. 10024–10035, 1992. View at Scopus
  41. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: a program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, no. 2, pp. 187–217, 1983.
  42. W. Damm, A. Frontera, J. Tirado-Rives, and W. L. Jorgensen, “OPLS all-atom force field for carbohydrates,” Journal of Computational Chemistry, vol. 18, no. 16, pp. 1955–1970, 1997. View at Scopus
  43. W. D. Cornell, P. Cieplak, C. I. Bayly et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5179–5197, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol. 118, no. 9, p. 2309, 1996.
  45. K. Binder and D. P. Landau, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, UK, 2000.
  46. A. Gross, Theoretical Surface Science: A Microscopic Perspective, Springer, Heidelberg, Germany, 2009.
  47. K. A. Fichthorn and W. H. Weinberg, “Theoretical foundations of dynamical Monte Carlo simulations,” The Journal of Chemical Physics, vol. 95, no. 2, pp. 1090–1096, 1991. View at Scopus
  48. S. P. Meyn and R. L. Twedee, Markov Chains and Stochastic Stability, Springer, 1993.
  49. M. Giesen, C. Steimer, and H. Ibach, “What does one learn from equilibrium shapes of two-dimensional islands on surfaces?” Surface Science, vol. 471, no. 1–3, pp. 80–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Ibach, Physics of Surfaces and Interfaces, Springer, Heidelberg, Germany, 2006.
  51. H. P. Bonzel, “3D equilibrium crystal shapes in the new light of STM and AFM,” Physics Reports, vol. 385, no. 1-2, pp. 1–67, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  52. K. Pötting, N. B. Luque, P. M. Quaino, H. Ibach, and W. Schmickler, “Island dynamics on charged silver electrodes: kinetic Monte-Carlo simulations,” Electrochimica Acta, vol. 54, no. 19, pp. 4494–4500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Giesen and G. Schulze Icking-Konert, “Equilibrium fluctuations and decay of step bumps on vicinal Cu (111) surfaces,” Surface Science, vol. 412-413, pp. 645–656, 1998. View at Scopus
  54. J. C. Heyraud and J. J. Métois, “Equilibrium shape and temperature; Lead on graphite,” Surface Science, vol. 128, no. 2-3, pp. 334–342, 1983. View at Scopus
  55. C. Bombis and H. Ibach, “Island equilibrium shape and shape fluctuations on the reconstructed Au(100) surface,” Surface Science, vol. 564, no. 1–3, pp. 201–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Dieluweit, H. Ibach, and M. Giesen, “Potential dependence of step and kink energies on Au(100) electrodes in sulfuric acid,” Faraday Discussions, vol. 121, pp. 27–42, 2002. View at Scopus
  57. S. Dieluweit and M. Giesen, “STM studies on the island dynamics on Au(100) electrodes in sulfuric acid,” Journal of Physics Condensed Matter, vol. 14, no. 16, pp. 4211–4225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Baier, S. Dieluweit, and M. Giesen, “Step and island dynamics on Cu(111), Ag(111) and Au(100) electrodes in electrolyte,” Surface Science, vol. 502-503, pp. 463–473, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Stoltze, “Simulation of surface defects,” Journal of Physics: Condensed Matter, vol. 6, no. 45, pp. 9495–9517, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Vitos, H. L. Skriver, and J. Kollár, “Formation energy for steps and kinks on cubic transition metal surfaces,” Surface Science, vol. 425, no. 2, pp. 212–223, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. D. C. Schlößer, L. K. Verheij, G. Rosenfeld, and G. Comsa, “Determination of step free energies from island shape fluctuations on metal surfaces,” Physical Review Letters, vol. 82, no. 19, pp. 3843–3846, 1999. View at Scopus
  62. K. Kleiner, Theoretische modellierung der selbsdiffusion auf Au(100), Diploma thesis, University of Ulm, Ulm, Germany, 2010.