About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 347072, 10 pages
http://dx.doi.org/10.1155/2011/347072
Research Article

Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

1Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 S. M. de Tucumán, Argentina
2Cátedra de Fisicoquímica I, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN S, M. de Tucumán., Argentina
3Centro de Química Inorgánica, CEQUINOR/CCT, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115. CC. 962 (B1900AVV), 1900 La Plata, Argentina
4Laboratorio de Fisicoquímica, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Avenida Independencia 1800, T4000CAN S. M. de Tucumán., Argentina

Received 11 February 2011; Accepted 14 April 2011

Academic Editor: Joel Bowman

Copyright © 2011 Laura Cecilia Bichara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Eggerer, U. Remberger, and C. Grünewälder, “On the mechanism of biological transformation of citric acid. v. citrate synthase, a hydrolase for malyl coenzyme a.zum mechanismus der biologischen umwandlung von citronensaeure. v. citrat-synthase, eine hydrolase fuer malyl-coenzym A,” Biochemische Zeitschrift, vol. 339, pp. 436–453, 1964. View at Scopus
  2. P. Wunderwald and H. Eggerer, “18-O-studies with citrate synthase and malate synthase,” European Journal of Biochemistry, vol. 11, no. 1, pp. 97–105, 1969. View at Scopus
  3. T. S. Raman and E. R. B. Shanmugasundaram, “The effects of two quaternary ammonium compounds on citric acid and sterol synthesis in Aspergillus niger,” Journal of General Microbiology, vol. 31, pp. 23–29, 1963. View at Publisher · View at Google Scholar
  4. S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” Journal of Raman Spectroscopy, vol. 37, no. 7, pp. 719–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. De Gelder, K. De Gussem, P. Vandenabeele, P. De Vos, and L. Moens, “Methods for extracting biochemical information from bacterial Raman spectra: an explorative study on Cupriavidus metallidurans,” Analytica Chimica Acta, vol. 585, no. 2, pp. 234–240, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. E. Nordman, A. S. Weldon, and A. L. Patterson, “X-ray crystal analysis of the substrates of aconitase—I. Rubidium dihydrogen citrate,” Acta Crystallographica, vol. 13, pp. 414–417, 1960. View at Publisher · View at Google Scholar
  7. J. P. Glusker, J. A. Minkin, and A. L. Patterson, “X-ray crystal analysis of the substrates of aconitase—9. A refinement of the structure of anhydrous citric acid,” Acta Crystallographica Section B, vol. 25, no. 6, pp. 1066–1072, 1969. View at Publisher · View at Google Scholar · View at Scopus
  8. D. E. Zacharias, J. P. Glusker, R. Guthrie, A. C. Sullivan, and P. A. Srere, “The structure of a citric anhydride derivative, C8H6O7,” Acta Crystallographica Section C, vol. 40, pp. 2100–2103, 1984. View at Publisher · View at Google Scholar
  9. R. Lemor, M. B. Kruger, D. M. Wieliczka, P. Spencer, and T. May, “Dentin etch chemistry investigated by Raman and infrared spectroscopy,” Journal of Raman Spectroscopy, vol. 31, no. 3, pp. 171–176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Moreira and L. Santos, “Analysis of organic acids in wines by Fourier-transform infrared spectroscopy,” Analytical and Bioanalytical Chemistry, vol. 382, no. 2, pp. 421–425, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. Nose, M. Myojin, M. Hojo, T. Ueda, and T. Okuda, “Proton nuclear magnetic resonance and Raman spectroscopic studies of Japanese sake, an alcoholic beverage,” Journal of Bioscience and Bioengineering, vol. 99, no. 5, pp. 493–501, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. D. Tsay and T. T. Fang, “Effect of pH on the chemistry of the barium titanium citrate gel and its thermal decomposition behavior,” Journal of the American Ceramic Society, vol. 84, no. 11, pp. 2475–2478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Caillet, N. Sheibat-Othman, and G. Fevotte, “Crystallization of monohydrate citric acid. 2. Modeling through population balance equations,” Crystal Growth and Design, vol. 7, no. 10, pp. 2088–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Xiong, J. M. McLellan, Y. Yin, and Y. Xia, “Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions,” Angewandte Chemie, vol. 46, no. 5, pp. 790–794, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. Tarakeshwar and S. Manogaran, “Ground state vibrations of citric acid and the citrate trianion-an ab initio study,” Spectrochimica Acta Part A, vol. 50, no. 14, pp. 2327–2343, 1994. View at Scopus
  16. P. K. Ghosh and D. S. Jayas, “Use of spectroscopic data for automation in food processing industry,” in Proceedings of the American Society of Agricultural and Biological Engineers (ASABE '08), Providence, Ri, USA, June 2008.
  17. G. Rauhut and P. Pulay, “Transferable scaling factors for density functional derived vibrational force fields,” Journal of Physical Chemistry, vol. 99, no. 10, pp. 3093–3100, 1995. View at Scopus
  18. G. Rauhut and P. Pulay, “Erratumml: transferable scaling factors for density functional derived vibrational force fields,” Journal of Physical Chemistry, vol. 99, no. 39, Article ID 14572, 1995.
  19. F. Kalincsák and G. Pongor, “Extension of the density functional derived scaled quantum mechanical force field procedure,” Spectrochimica Acta Part A, vol. 58, no. 5, pp. 999–1011, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Molecular Physics, vol. 19, no. 4, pp. 553–566, 1970. View at Publisher · View at Google Scholar
  21. A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chemical Reviews, vol. 88, no. 6, pp. 899–926, 1988. View at Scopus
  22. J. P. Foster and F. Weinhold, “Natural hybrid orbitals,” Journal of the American Chemical Society, vol. 102, no. 24, pp. 7211–7218, 1980. View at Scopus
  23. A. E. Reed and F. Weinhold, “Natural localized molecular orbitals,” The Journal of Chemical Physics, vol. 83, no. 4, pp. 1736–1740, 1985. View at Scopus
  24. E. D. Gledening, J. K. Badenhoop, A. D. Reed, J. E. Carpenter, and F. Weinhold, NBO 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, Wis, USA, 1996.
  25. R. F. W. Bader, Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, UK, 1990.
  26. F. B. Köning, J. Schönbohm, and D. Bayles, “AIM2000: a program to analyze and visualize atoms in molecules,” Journal of Computational Chemistry, vol. 22, no. 5, pp. 545–559, 2001. View at Scopus
  27. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993. View at Scopus
  28. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Reiew B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar
  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.01, Gaussian inc., Pittsburgh, Pa, USA, 2003.
  30. T. Sundius, “Molvib—a flexible program for force field calculations,” Journal of Molecular Structure, vol. 218, pp. 321–326, 1990. View at Scopus
  31. T. Sundius, “Scaling of ab initio force fields by MOLVIB,” Vibrational Spectroscopy, vol. 29, no. 1-2, pp. 89–95, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Fogarasi, X. Zhou, P. W. Taylor, and P. Pulay, “The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces,” Journal of the American Chemical Society, vol. 114, no. 21, pp. 8191–8201, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, and E. L. Sibert, “Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings,” Journal of Chemical Physics, vol. 118, no. 4, pp. 1735–1746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Palafox, J. L. Núñez, and M. Gil, “Theoretical quantum chemical study of benzoic acid: geometrical parameters and vibrational wavenumbers,” International Journal of Quantum Chemistry, vol. 89, no. 1, pp. 1–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Plazanet, N. Fukushima, M. R. Johnson, A. J. Horsewill, and H. P. Trommsdorff, “The vibrational spectrum of crystalline benzoic acid: inelastic neutron scattering and density functional theory calculations,” Journal of Chemical Physics, vol. 115, no. 7, pp. 3241–3248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Brandán, F. M. López, M. Montejo, J. J. López-González, and A. Ben Altabef, “Theoretical and experimental vibrational spectrum study of 4-hydroxybenzoic acid as monomer and dimer,” Spectrochimica Acta—Part A, vol. 75, no. 5, pp. 1422–1434, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, “Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives,” Journal of the American Chemical Society, vol. 101, no. 10, pp. 2550–2560, 1979. View at Scopus
  38. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, “Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled Quantum Mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene,” Journal of the American Chemical Society, vol. 105, no. 24, pp. 7037–7047, 1983. View at Scopus
  39. A. B. Nielsen and A. J. Holder, Gauss View 3.0, User’s Reference, Gaussian inc., Pittsburgh, Pa, USA, 2003.
  40. I. D. Reva and S. G. Stepanian, “An infrared study on matrix-isolated benzoic acid,” Journal of Molecular Spectroscopy and Molecular Structure, vol. 349, pp. 337–340, 1995. View at Publisher · View at Google Scholar
  41. J. Zinczuk, A. E. Ledesma, S. A. Brandán, O. E. Piro, J. J. López-González, and A. Ben Altabef, “Structural and vibrational study of 2-(2-furyl)-4,5-1H-dihydroimidazole,” Journal of Physical Organic Chemistry, vol. 22, no. 12, pp. 1166–1177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. E. Ledesma, S. A. Brandán, J. Zinczuk, O. E. Piro, J. J. López-González, and A. Ben Altabef, “Structural and vibrational study of 2-(2'-furyl)-1H-imidazole,” Journal of Physical Organic Chemistry, vol. 21, no. 12, pp. 1086–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus