About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 414108, 12 pages
http://dx.doi.org/10.1155/2011/414108
Research Article

Potentiostatic Testing of Oxygen Reduction on Polymer Carbon Electrodes

ICEMS and Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received 16 May 2011; Revised 2 August 2011; Accepted 4 August 2011

Academic Editor: Milan M. Jaksic

Copyright © 2011 C. A. C. Sequeira and D. M. F. Santos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Paucirova, D. M. Drazic, and A. Damjanovic, “The effect of surface coverage by adsorbed oxygen on the kinetics of oxygen reduction at oxide free platinum,” Electrochimica Acta, vol. 18, no. 12, pp. 945–951, 1973. View at Scopus
  2. P. S. D. Brito and C. A. C. Sequeira, “Cathodic oxygen reduction on noble metal and carbon electrodes,” Journal of Power Sources, vol. 52, no. 1, pp. 1–16, 1994. View at Scopus
  3. L. Liu, J. W. Lee, and B. N. Popov, “Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction,” Journal of Power Sources, vol. 162, no. 2, pp. 1099–1103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Van Brussel, G. Kokkinidis, A. Hubin, and C. Buess-Herman, “Oxygen reduction at platinum modified gold electrodes,” Electrochimica Acta, vol. 48, no. 25-26, pp. 3909–3919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Tripković, E. Skúlason, S. Siahrostami, J. K. Nørskov, and J. Rossmeisl, “The oxygen reduction reaction mechanism on Pt(1 1 1) from density functional theory calculations,” Electrochimica Acta, vol. 55, no. 27, pp. 7975–7981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Walch, A. Dhanda, M. Aryanpour, and H. Pitsch, “Mechanism of molecular oxygen reduction at the cathode of a PEM fuel cell: non-electrochemical reactions on catalytic Pt particles,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8464–8475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Jacob, “The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction,” Fuel Cells, vol. 6, no. 3-4, pp. 159–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. B. Yeager, “Dioxygen electrocatalysis: mechanisms in relation to catalyst structure,” Journal of Molecular Catalysis, vol. 38, pp. 5–25, 1986.
  9. N. M. Marković, R. R. Adžić, B. D. Cahan, and E. B. Yeager, “Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions,” Journal of Electroanalytical Chemistry, vol. 377, no. 1-2, pp. 249–259, 1994. View at Scopus
  10. D. Qu, “Investigation of oxygen reduction on activated carbon electrodes in alkaline solution,” Carbon, vol. 45, no. 6, pp. 1296–1301, 2007.
  11. T. Nagaoka and T. Sakai, “Oxygen reduction at electrochemically treated glassy carbon electrodes,” Analytical Chemistry, vol. 58, no. 9, pp. 1953–1955, 1986. View at Scopus
  12. M. Appel and A. J. Appleby, “A ring-disk electrode study of the reduction of oxygen on active carbon in alkaline solution,” Electrochimica Acta, vol. 23, no. 11, pp. 1243–1246, 1978. View at Scopus
  13. I. Iliev, J. Mrha, A. Kaisheva, and S. Gamburzev, “Influence of the electrolyte content of oxygen carbon gas-diffusion electrodes on their electro-chemical performance in acid solutions,” Journal of Power Sources, vol. 3, no. 3, pp. 245–255, 1978. View at Scopus
  14. I. Kruusenberg, J. Leis, M. Arulepp, and K. Tammeveski, “Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution,” Journal of Solid State Electrochemistry, vol. 14, no. 7, pp. 1269–1277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Elbaz, E. Korin, L. Soifer, and A. Bettelheim, “Electrocatalytic oxygen reduction by Co(III) porphyrins incorporated in aerogel carbon electrodes,” Journal of Electroanalytical Chemistry, vol. 621, no. 1, pp. 91–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Manisankar and A. Gomathi, “Mediated oxygen reduction at a glassy carbon electrode modified with riboflavin and 9,10-anthraquinones,” Journal of Power Sources, vol. 150, no. 1-2, pp. 240–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Manisankar and A. Gomathi, “Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions,” Journal of Molecular Catalysis A, vol. 232, no. 1-2, pp. 45–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Vaik, A. Sarapuu, K. Tammeveski, F. Mirkhalaf, and D. J. Schiffrin, “Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH,” Journal of Electroanalytical Chemistry, vol. 564, pp. 159–166, 2004.
  19. R. Jasinski, “Cobalt phthalocyanine as a fuel cell cathode,” Journal of The Electrochemical Society, vol. 112, pp. 526–528, 1965.
  20. V. S. Bagotzky, M. R. Tarasevich, K. A. Radyushkina, O. A. Levina, and S. I. Andrusyova, “Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte,” Journal of Power Sources, vol. 2, pp. 233–240, 1977. View at Scopus
  21. C. Z. Deng and M. J. Dignam, “Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts: II. Electrochemical stability and proposed mechanism,” Journal of the Electrochemical Society, vol. 145, no. 10, pp. 3513–3520, 1998. View at Scopus
  22. A. Van Der Putten, A. Elzing, W. Visscher, and E. Barendrecht, “Oxygen reduction on pyrolysed carbon-supported transition metal chelates,” Journal of Electroanalytical Chemistry, vol. 205, no. 1-2, pp. 233–244, 1986. View at Scopus
  23. Q. L. Zhao, Z. L. Zhang, L. Bao, and D. W. Pang, “Surface structure-related electrochemical behaviors of glassy carbon electrodes,” Electrochemistry Communications, vol. 10, no. 2, pp. 181–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. F. Harris, “Fullerene-related structure of commercial glassy carbons,” Philosophical Magazine, vol. 84, no. 29, pp. 3159–3167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Shi and K.-K. Shiu, “Scanning tunneling microscopic and voltammetric studies of the surface structures of an electrochemically activated glassy carbon electrode,” Analytical Chemistry, vol. 74, pp. 879–885, 2002.
  26. A. J. Downard and M. J. Prince, “Barrier properties of organic monolayers on glassy carbon electrodes,” Langmuir, vol. 17, no. 18, pp. 5581–5586, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. Mikhaylova, O. A. Khazova, and V. S. Bagotzky, “Electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto glassy carbon and into Nafion films,” Journal of Electroanalytical Chemistry, vol. 480, no. 1-2, pp. 225–232, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Field and M. V. Swain, “The indentation characterisation of the mechanical properties of various carbon materials: glassy carbon, coke and pyrolytic graphite,” Carbon, vol. 34, no. 11, pp. 1357–1366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. K. R. Kneten and R. L. McCreery, “Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes,” Analytical Chemistry, vol. 64, no. 21, pp. 2518–2524, 1992. View at Scopus
  30. R. J. Taylor and A. A. Humffray, “Electrochemical studies on glassy carbon electrodes—II. Oxygen reduction in solutions of high pH (pH>10),” Journal of Electroanalytical Chemistry, vol. 64, pp. 63–84, 1975.
  31. J. O. M. Bockris, “Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen,” The Journal of Chemical Physics, vol. 24, no. 4, pp. 817–827, 1956. View at Scopus
  32. D. S. Gnanamuthu and J. V. Petrocelli, Journal of The Electrochemical Society, vol. 114, p. 1036, 1967.
  33. O. E. Mouahid, C. Coutanceau, E. M. Belgsir, P. Crouigneau, J. M. Léger, and C. Lamy, “Electrocatalytic reduction of dioxygen at macrocycle conducting polymer electrodes in acid media,” Journal of Electroanalytical Chemistry, vol. 426, no. 1-2, pp. 117–123, 1997. View at Scopus
  34. K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, NY, USA, 1967.
  35. E. Gileadi, Physical Electrochemistry, Wiley-VCH, Weinheim, Germany, 2011.
  36. R. E. Davis, G. L. Horvath, and C. W. Tobias, “The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions,” Electrochimica Acta, vol. 12, no. 3, pp. 287–297, 1967.
  37. R. J. Taylor and A. A. Humffray, “Electrochemical studies on glassy carbon electrodes—III. Oxygen reduction in solutions of low pH (pH<10),” Journal of Electroanalytical Chemistry, vol. 64, no. 1, pp. 85–94, 1975. View at Scopus
  38. E. Yeager, P. Krouse, and K. V. Rao, “The Kinetics of the oxygen-peroxide couple on carbon,” Electrochimica Acta, vol. 9, pp. 1057–1070, 1964.
  39. W. G. Berl, “A reversible oxygen electrode,” Transactions of the Electrochemical Society, vol. 83, pp. 253–270, 1943.
  40. W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, Prentice-Hall, New York, NY, USA, 2nd edition, 1952.
  41. S. Basu, Ed., Recent Trends in Fuel Cell Science and Technology, Springer, New York, NY, USA, 1st edition, 2007.
  42. A. J. Appleby, in Modern Aspects of Electrochemistry, B. E. Conway and J. O'M. Bockris, Eds., vol. 9, pp. 369–378, Plenum Press, New York, NY, USA, 1974.
  43. J. Bett, J. Lundquist, E. Washington, and P. Stonehart, “Platinum crystallite size considerations for electrocatalytic oxygen reduction-I,” Electrochimica Acta, vol. 18, no. 5, pp. 343–348, 1973. View at Scopus
  44. J. T. Lundquist and P. Stonehart, “Platinum crystallite size effects on oxide formation and reduction parameters-II,” Electrochimica Acta, vol. 18, no. 5, pp. 349–354, 1973. View at Scopus
  45. M. O. Davies, M. Clark, E. Yeager, and F. Hovorka, “The oxygen electrode–I. Isotopic investigation of electrode mechanisms,” Journal of The Electrochemical Society, vol. 106, pp. 56–61, 1959.
  46. J. O'M. Bockris and A. K. N. Reddy, Modern Electrochemistry 1 & 2, Plenum Press, New York, NY, USA, 1998.
  47. A. J. Appleby and J. Marie, “Kinetics of oxygen reduction on carbon materials in alkaline solution,” Electrochimica Acta, vol. 24, no. 2, pp. 195–202, 1979.
  48. A. Damjanovic, A. Dey, and J. O'M. Bockris, “Electrode kinetics of oxygen reduction on oxide-free platinum electrodes,” Electrochimica Acta, vol. 12, no. 6, pp. 615–628, 1967.
  49. A. Damjanovic and V. Brusić, “Oxygen reduction at Pt-Au and Pd-Au alloy electrodes in acid solution,” Electrochimica Acta, vol. 12, no. 9, pp. 1171–1184, 1967.
  50. A. Damjanovic, M. A. Genshaw, and J. O'M. Bockris, “The role of hydrogen peroxide in oxygen reduction at platinum in H2SO4 solution,” Journal of The Electrochemical Society, vol. 114, pp. 466–472, 1967.
  51. T. Hurlen, Y. L. Sandler, and E. A. Pantier, “Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions,” Electrochimica Acta, vol. 11, no. 10, pp. 1463–1473, 1966.
  52. L. Qi, X. Qian, and J. Li, “Kinetics of congruent vaporization of ZnO islands,” Physical Review Letters, vol. 107, no. 14, Article ID 146101, 4 pages, 2011. View at Publisher · View at Google Scholar