About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 530397, 16 pages
http://dx.doi.org/10.1155/2011/530397
Review Article

Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores

Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 18 May 2011; Accepted 22 August 2011

Academic Editor: Wolfgang Schmickler

Copyright © 2011 Yun Cai and Radoslav R. Adzic. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Adzic, J. Zhang, K. Sasaki et al., “Platinum monolayer fuel cell electrocatalysts,” Topics in Catalysis, vol. 46, no. 3-4, pp. 249–262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. R. Brankovic, J. X. Wang, and R. R. Adžić, “Metal monolayer deposition by replacement of metal adlayers on electrode surfaces,” Surface Science, vol. 474, no. 1—3, pp. L173–L179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zhang, F. H. B. Lima, M. H. Shao et al., “Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction,” Journal of Physical Chemistry B, vol. 109, no. 48, pp. 22701–22704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, “Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics,” Journal of the American Chemical Society, vol. 127, no. 36, pp. 12480–12481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang, M. B. Vukmirović, K. Sasaki, F. Uribe, and R. R. Adžić, “Platinum monolayer electrocatalysts for oxygen reduction: effect of substrates, and long-term stability,” Journal of the Serbian Chemical Society, vol. 70, no. 3, pp. 513–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, and R. R. Adzic, “Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates,” Angewandte Chemie International Edition, vol. 44, no. 14, pp. 2132–2135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Shao, K. Sasaki, N. S. Marinkovic, L. Zhang, and R. R. Adzic, “Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports,” Electrochemistry Communications, vol. 9, no. 12, pp. 2848–2853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Shao, K. Sasaki, P. Liu, and R. R. Adzic, “Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction,” Zeitschrift fur Physikalische Chemie, vol. 221, no. 9-10, pp. 1175–1190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Vukmirovic, J. Zhang, K. Sasaki et al., “Platinum monolayer electrocatalysts for oxygen reduction,” Electrochimica Acta, vol. 52, no. 6, pp. 2257–2263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Sasaki, L. Zhang, and R. R. Adzic, “Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction,” Physical Chemistry Chemical Physics, vol. 10, no. 1, pp. 159–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. U. Nilekar, Y. Xu, J. Zhang et al., “Bimetallic and ternary alloys for improved oxygen reduction catalysis,” Topics in Catalysis, vol. 46, pp. 276–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Xu, A. V. Ruban, and M. Mavrikakis, “Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys,” Journal of the American Chemical Society, vol. 126, no. 14, pp. 4717–4725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. X. Wang, H. Inada, L. Wu et al., “Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects,” Journal of the American Chemical Society, vol. 131, no. 47, pp. 17299–17302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Santos, P. Quaino, and W. Schmickler, “On the electrocatalysis of nanostructures: monolayers of a foreign atom (Pd) on different substrates M(1 1 1),” Electrochimica Acta, vol. 55, no. 14, pp. 4346–4352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Hammer and J. K. Nørskov, “Theoretical surface science and catalysis—calculations and concepts,” in Advances in Catalysis, C. G. Bruce and K. Helmut, Eds., vol. 45, pp. 71–129, Academic Press, 2000.
  16. M. Shao, P. Liu, J. Zhang, and R. Adzic, “Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction,” Journal of Physical Chemistry B, vol. 111, no. 24, pp. 6772–6775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Greeley and M. Mavrikakis, “Alloy catalysts designed from first principles,” Nature Materials, vol. 3, pp. 810–815, 2004.
  18. J. Greeley, J. K. Nørskov, and M. Mavrikakis, “Electronic structure and catalysis on metal surfaces,” Annual Review of Physical Chemistry, vol. 53, pp. 319–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Shao, T. Huang, P. Liu et al., “Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction,” Langmuir, vol. 22, no. 25, pp. 10409–10415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. M. Marković, H. A. Gasteiger, B. N. Grgur, and P. N. Ross, “Oxygen reduction reaction on Pt(111): effects of bromide,” Journal of Electroanalytical Chemistry, vol. 467, no. 1, pp. 157–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer et al., “Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure,” Angewandte Chemie International Edition, vol. 45, no. 18, pp. 2897–2901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Cai, C. Ma, Y. Zhu, J. X. Wang, and R. R. Adzic, “Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal,” Langmuir, vol. 27, no. 13, pp. 8540–8547, 2011. View at Publisher · View at Google Scholar
  23. K. J. J. Mayrhofer, B. B. Blizanac, M. Arenz, V. R. Stamenkovic, P. N. Ross, and N. M. Markovic, “The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis,” Journal of Physical Chemistry B, vol. 109, no. 30, pp. 14433–14440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Carrasquillo, J. J. Jeng, R. J. Barriga, W. F. Temesghen, and M. P. Soriaga, “Electrode-surf ace coordination chemistry: ligand substitution and competitive coordination of halides at well-defined Pd(100) and Pd(111) single crystals,” Inorganica Chimica Acta, vol. 255, no. 2, pp. 249–254, 1997. View at Scopus
  25. E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Growth—An Introduction to the Initial Stages of Metal Deposition, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1996.
  26. J. X. Wang, N. M. Markovic, and R. R. Adzic, “Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects,” Journal of Physical Chemistry B, vol. 108, no. 13, pp. 4127–4133, 2004. View at Scopus
  27. P. W. Voorhees, “The theory of Ostwald ripening,” Journal of Statistical Physics, vol. 38, no. 1-2, pp. 231–252, 1985.
  28. K. Gong, W. F. Chen, K. Sasaki et al., “Platinum-monolayer electrocatalysts: palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction,” Journal of Electroanalytical Chemistry, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. A. J. Rand and R. Woods, “Cyclic voltommetric studies on Iridium electrodes in sulfuric acid solutions-nature of oxygen layer and metal dissolution,” Journal of Electroanalytical Chemistry, vol. 55, pp. 375–381, 1974.
  30. F. J. Vidal-Iglesias, J. Solla-Gullón, V. Montiel, J. M. Feliu, and A. Aldaz, “Screening of electrocatalysts for direct ammonia fuel cell: ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles,” Journal of Power Sources, vol. 171, no. 2, pp. 448–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Lee, L. Zhang, and J. Zhang, “IrxCo1−x (x = 0.3 – 1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction,” Journal of Power Sources, vol. 170, no. 2, pp. 291–296, 2007.
  32. J. Greeley, I. E. L. Stephens, A. S. Bondarenko et al., “Alloys of platinum and early transition metals as oxygen reduction electrocatalysts,” Nature Chemistry, vol. 1, no. 7, pp. 552–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996. View at Scopus
  34. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15–50, 1996.
  35. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Scopus
  36. J. K. Nørskov, J. Rossmeisl, A. Logadottir et al., “Origin of the overpotential for oxygen reduction at a fuel-cell cathode,” Journal of Physical Chemistry B, vol. 108, no. 46, pp. 17886–17892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. G. E. Ramírez-Caballero, Y. Ma, R. Callejas-Tovar, and P. B. Balbuena, “Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium,” Physical Chemistry Chemical Physics, vol. 12, no. 9, pp. 2209–2218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Xing, Y. Cai, M. B. Vukmirovic et al., “Enhancing oxygen reduction reaction activity via Pd-Au alloy sublayer mediation of Pt monolayer electrocatalysts,” Journal of Physical Chemistry Letters, vol. 1, no. 21, pp. 3238–3242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Wang, A. Roudgar, and M. Eikerling, “Ab initio study of stability and site-specific oxygen adsorption energies of Pt nanoparticles,” Journal of Physical Chemistry C, vol. 113, no. 42, pp. 17989–17996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Jiang, L. H. Liang, and D. S. Zhao, “Lattice contraction and surface stress of fcc nanocrystals,” Journal of Physical Chemistry B, vol. 105, no. 27, pp. 6275–6277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo, and J. M. Zuo, “Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction,” Nature Materials, vol. 7, no. 4, pp. 308–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, and R. R. Adzic, “Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 10955–10964, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Wang, D. Van Der Vliet, K. L. More et al., “Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst,” Nano Letters, vol. 11, no. 3, pp. 919–926, 2011. View at Publisher · View at Google Scholar
  44. J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,” Science, vol. 315, no. 5809, pp. 220–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, and E. W. McFarland, “Electrocatalytic activity of gold-platinum clusters for low temperature fuel cell applications,” Journal of Physical Chemistry C, vol. 113, no. 12, pp. 5014–5024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. B. Xu, T. S. Zhao, S. Y. Shen, and Y. S. Li, “Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation,” International Journal of Hydrogen Energy, vol. 35, no. 13, pp. 6490–6500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. W. P. Zhou, X. Yang, M. B. Vukmirovic et al., “Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy,” Journal of the American Chemical Society, vol. 131, no. 35, pp. 12755–12762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. H. Shao, K. Sasaki, and R. R. Adzic, “Pd-Fe nanoparticles as electrocatalysts for oxygen reduction,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3526–3527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Fernández, J. Michael White, Y. Sun, W. Tang, G. Henkelman, and A. J. Bard, “Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods,” Langmuir, vol. 22, no. 25, pp. 10426–10431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Fernández, V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells,” Journal of the American Chemical Society, vol. 127, no. 38, pp. 13100–13101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. H. Shao, P. Liu, and R. R. Adzic, “Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes,” Journal of the American Chemical Society, vol. 128, no. 23, pp. 7408–7409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Hoshi, K. Kagaya, and Y. Hori, “Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111)×(111)] and Pd(S)-[n(100)×(111)],” Journal of Electroanalytical Chemistry, vol. 485, no. 1, pp. 55–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Hoshi, M. Kuroda, and Y. Hori, “Voltammograms of stepped and kinked stepped surfaces of palladium: Pd(S)-[n(111)×(100)] and Pd(S)-[n(100)×(110)],” Journal of Electroanalytical Chemistry, vol. 521, no. 1-2, pp. 155–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Baldauf and D. M. Kolb, “A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au(111) and Au(100),” Electrochimica Acta, vol. 38, no. 15, pp. 2145–2153, 1993. View at Scopus
  55. M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P. N. Ross, and N. M. Markovic, “CO adsorption and kinetics on well-characterized Pd films on Pt(1 1 1) in alkaline solutions,” Surface Science, vol. 506, no. 3, pp. 287–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. V. R. Stamenkovic, B. Fowler, B. S. Mun et al., “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability,” Science, vol. 315, no. 5811, pp. 493–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, and N. M. Markovic, “Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces,” Journal of the American Chemical Society, vol. 128, no. 27, pp. 8813–8819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S. L. Knupp, M. B. Vukmirovic, P. Haldar, J. A. Herron, M. Mavrikakis, and R. R. Adzic, “Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr nanoparticles,” Electrocatalysis, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Ghosh, M. B. Vukmirovic, F. J. DiSalvo, and R. R. Adzic, “Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties,” Journal of the American Chemical Society, vol. 132, no. 3, pp. 906–907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. L. R. Alden, C. Roychowdhury, F. Matsumoto et al., “Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches,” Langmuir, vol. 22, no. 25, pp. 10465–10471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Roychowdhury, F. Matsumoto, V. B. Zeldovich et al., “Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol,” Chemistry of Materials, vol. 18, no. 14, pp. 3365–3372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Gong, D. Su, and R. R. Adzic, “Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction,” Journal of the American Chemical Society, vol. 132, no. 41, pp. 14364–14366, 2010. View at Publisher · View at Google Scholar · View at Scopus