About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 786759, 20 pages
http://dx.doi.org/10.1155/2011/786759
Review Article

(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials

1Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätstr 150, NC4/073, D-44780 Bochum, Germany
2Materials Research Department, Ruhr University Bochum, D-44801 Bochum, Germany
3Research Department Interfacial Systems Chemistry, Ruhr University Bochum, D-44801 Bochum, Germany

Received 30 September 2011; Accepted 15 December 2011

Academic Editor: Konstantin Neyman

Copyright © 2011 Radim Beranek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Renz, “Photo-reactions of the oxides of titanium, cerium, and the earth-acids,” Helvetica Chimica Acta, vol. 4, pp. 961–968, 1921.
  2. G. G. Rao and N. R. Dhar, “Photosensitized oxidation of ammonia and ammonium salts and the problem of nitrification in soils,” Soil Science, vol. 31, pp. 379–384, 1931.
  3. N. R. Dhar and S. K. Mukherjee, “Photosynthesis of amino acids in vitro,” Nature, vol. 134, no. 3387, p. 499, 1934. View at Scopus
  4. A. A. Krasnovskii and V. S. Kiselev, “A method for testing the activity of titanium dioxide in paint films,” Tekh. Okraski, no. 3, pp. 26–27, 1940.
  5. C. F. Goodeve and J. A. Kitchener, “Photosensitisation by titanium dioxide,” Transactions of the Faraday Society, vol. 34, pp. 570–579, 1938. View at Publisher · View at Google Scholar · View at Scopus
  6. A. E. Jacobsen, “Titanium dioxide pigments. Correlation between photochemical reactivity and chalking,” Journal of Industrial and Engineering Chemistry, vol. 41, pp. 523–526, 1949.
  7. A. A. Krasnovskii and T. N. Gurevich, “Relation between atmospheric stability of pigmented paint films and the pigment-photosensitized formation of peroxide compounds,,” Doklady Akademii Nauk SSSR, vol. 74, pp. 569–572, 1950.
  8. A. A. Krasnovskii and T. N. Gurevich, “Photocatalytic action of some metal oxides,” Doklady Akademii Nauk SSSR, vol. 75, pp. 715–718, 1950.
  9. A. Fujishima and K. Honda, “Photosensitive electrode reactions. III. Electrochemical evidence for the mechanism of the primary stage of photosynthesis,” Bulletin of the Chemical Society of Japan, vol. 44, no. 4, pp. 1148–1150, 1971.
  10. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Fujishima, K. Honda, and S. Kikuchi, “Photochemical reactions of semiconductors. I. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode,” Kogyo Kagaku Zasshi, vol. 72, no. 1, pp. 108–113, 1969.
  12. M. S. Wrighton, P. T. Wolczanski, and A. B. Ellis, “Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxides,” Journal of Solid State Chemistry, vol. 22, no. 1, pp. 17–29, 1977. View at Scopus
  13. M. Sharon and S. Licht, “Solar photoelectrochemical generation of hydrogen fuel,” in Encyclopedia of Electrochemistry, S. Licht, Ed., vol. 6, pp. 346–357, Wiley-VCH, Weinheim, Germany, 2003.
  14. K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor-solution interfaces,” Journal of Applied Electrochemistry, vol. 37, no. 7, pp. 765–787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chemical Reviews, vol. 110, no. 11, pp. 6503–6570, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Z. Chen, T. F. Jaramillo, T. G. Deutsch et al., “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” Journal of Materials Research, vol. 25, no. 1, pp. 3–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Scopus
  18. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C, vol. 1, no. 1, pp. 1–21, 2000. View at Scopus
  19. D. A. Tryk, A. Fujishima, and K. Honda, “Recent topics in photoelectrochemistry: achievements and future prospects,” Electrochimica Acta, vol. 45, no. 15-16, pp. 2363–2376, 2000. View at Scopus
  20. O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, vol. 32, no. 1-2, pp. 33–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995.
  22. T. L. Thompson and J. T. Yates Jr., “TiO2-based photocatalysis: surface defects, oxygen and charge transfer,” Topics in Catalysis, vol. 35, no. 3-4, pp. 197–210, 2005. View at Publisher · View at Google Scholar
  23. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515–582, 2008. View at Publisher · View at Google Scholar
  24. B. Ohtani, “Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation,” Chemistry Letters, vol. 37, no. 3, pp. 217–229, 2008. View at Scopus
  25. B. Ohtani, “Photocatalysis A to Z-What we know and what we do not know in a scientific sense,” Journal of Photochemistry and Photobiology C, vol. 11, no. 4, pp. 157–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder,” Journal of the American Chemical Society, vol. 99, no. 1, pp. 303–304, 1977.
  27. S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders,” Journal of Physical Chemistry, vol. 81, no. 15, pp. 1484–1488, 1977. View at Scopus
  28. S. Sakthivel, M. Janczarek, and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19384–19387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Kisch, G. Burgeth, and W. Macyk, “Visible light photocatalysis by a titania transition metal complex,” Advances in Inorganic Chemistry, vol. 56, pp. 241–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Sakthivel and H. Kisch, “Daylight photocatalysis by carbon-modified titanium dioxide,” Angewandte Chemie—International Edition, vol. 42, no. 40, pp. 4908–4911, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. Sakthivel and H. Kisch, “Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide,” ChemPhysChem, vol. 4, no. 5, pp. 487–490, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. W. Macyk, G. Burgeth, and H. Kisch, “Photoelectrochemical properties of platinum(IV) chloride surface modified TiO2,” Photochemical and Photobiological Sciences, vol. 2, no. 3, pp. 322–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Burgeth and H. Kisch, “Photocatalytic and photoelectrochemical properties ot titaniachloroplatinate(IV),” Coordination Chemistry Reviews, vol. 230, no. 1-2, pp. 41–47, 2002. View at Scopus
  34. H. Kisch and W. Macyk, “Visible-light photocatalysis by modified titania,” ChemPhysChem, vol. 3, no. 5, pp. 399–400, 2002. View at Publisher · View at Google Scholar
  35. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst,” Applied Catalysis B, vol. 32, no. 4, pp. 215–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Macyk and H. Kisch, “Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes,” Chemistry, vol. 7, no. 9, pp. 1862–1867, 2001. View at Publisher · View at Google Scholar
  37. C. Chen, W. Ma, and J. Zhao, “Semiconductor-mediated photodegradation of pollutants under visible-light irradiation,” Chemical Society Reviews, vol. 39, no. 11, pp. 4206–4219, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. Mitoraj, R. Beránek, and H. Kisch, “Mechanism of aerobic visible light formic acid oxidation catalyzed by poly(tri-s-triazine) modified titania,” Photochemical and Photobiological Sciences, vol. 9, no. 1, pp. 31–38, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. Mitoraj and H. Kisch, “On the mechanism of urea-induced titania modification,” Chemistry, vol. 16, no. 1, pp. 261–269, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. Wang, K. Hashimoto, A. Fujishima et al., “Light-induced amphiphilic surfaces,” Nature, vol. 388, no. 6641, pp. 431–432, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Wang, K. Hashimoto, A. Fujishima et al., “Photogeneration of highly amphiphilic TiO2,” Advanced Materials, vol. 10, no. 2, pp. 135–138, 1998. View at Scopus
  42. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, “Studies of surface wettability conversion on TiO2,” Journal of Physical Chemistry B, vol. 103, no. 12, pp. 2188–2194, 1999. View at Scopus
  43. T. Zubkoy, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Yates Jr., “Ultraviolet light-induced hydrophilicity effect on TiO2(110) (1×1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15454–15462, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. B. Kraeutler and A. J. Bard, “Heterogeneous photocatalytic synthesis of methane from acetic acid—new Kolbe reaction pathway,” Journal of the American Chemical Society, vol. 100, no. 7, pp. 2239–2240, 1978. View at Scopus
  45. P. Du, J. A. Moulijn, and G. Mul, “Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields,” Journal of Catalysis, vol. 238, no. 2, pp. 342–352, 2006. View at Publisher · View at Google Scholar
  46. F. Parrino, A. Ramakrishnan, and H. Kisch, “Semiconductor-photocatalyzed sulfoxidation of alkanes,” Angewandte Chemie—International Edition, vol. 47, no. 37, pp. 7107–7109, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. Q. Wang, M. Zhang, C. Chen, W. Ma, and J. Zhao, “Photocatalytic aerobic oxidation of alcohols on TiO2,” Angewandte Chemie—International Edition, vol. 49, no. 43, pp. 7976–7979, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. I. Naya, A. Inoue, and H. Tada, “Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant,” Journal of the American Chemical Society, vol. 132, no. 18, pp. 6292–6293, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. X. Lang, H. Ji, C. Chen, W. Ma, and J. Zhao, “Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2,” Angewandte Chemie—International Edition, vol. 50, no. 17, pp. 3934–3937, 2011. View at Publisher · View at Google Scholar · View at PubMed
  50. H. Sakai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, “Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation,” Chemistry Letters, no. 3, pp. 185–186, 1995.
  51. A. H. Sakai, R. X. Cai, T. Yoshioka, Y. Kubota, K. Hashimoto, and A. Fujishima, “Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles,” Biochimica et Biophysica Acta, vol. 1201, no. 2, pp. 259–265, 1994. View at Publisher · View at Google Scholar
  52. R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, and A. Fujishima, “Induction of cytotoxicity by photoexcited TiO2 particles,” Cancer Research, vol. 52, no. 8, pp. 2346–2348, 1992.
  53. R. Cai, K. Hashimoto, Y. Kubota, and A. Fujishima, “Increment of photocatalytic killing of cancer cells using titanium dioxide with the aid of superoxide dismutase,” Chemistry Letters, no. 3, pp. 427–430, 1992.
  54. R. Cai, K. Hashimoto, K. Itoh, Y. Kubota, and A. Fujishima, “Photokilling of malignant cells with ultrafine TiO2 powder,” Bulletin of the Chemical Society of Japan, vol. 64, no. 4, pp. 1268–1273, 1991.
  55. H. Gerischer and H. Tributsch, “Electrochemical studies on the spectral sensitization of zinc oxide single crystals,” Berichte der Bunsen-Gesellschaft, vol. 72, no. 3, pp. 437–445, 1968.
  56. H. Tributsch and H. Gerischer, “Electrochemical studies on the mechanism of sensitization and supersensitization of zinc oxide single crystals,” Berichte der Bunsen-Gesellschaft, vol. 73, no. 3, pp. 251–260, 1969.
  57. H. Tributsch and H. Gerischer, “Use of semiconductor electrodes in the study of photochemical reactions,” Berichte der Bunsen-Gesellschaft, vol. 73, no. 8-9, pp. 850–854, 1969.
  58. H. Tributsch, “Reaction of excited chlorophyll molecules at electrodes and in photosynthesis,” Photochemistry and Photobiology, vol. 16, no. 4, pp. 261–269, 1972.
  59. H. Tributsch and M. Calvin, “Electrochemistry of excited molecules. Photoelectrochemical reactions of chlorophylls,” Photochemistry and Photobiology, vol. 14, no. 2, pp. 95–112, 1971.
  60. M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida, “Dye sensitization and surface structures of semiconductor electrodes,” Industrial & Engineering Chemistry Product Research and Development, vol. 19, no. 3, pp. 415–421, 1980. View at Scopus
  61. J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, and J. Augustynski, “Highly efficient sensitization of titanium dioxide,” Journal of the American Chemical Society, vol. 107, no. 10, pp. 2988–2990, 1985. View at Scopus
  62. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
  63. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. B. C. O'Regan and J. R. Durrant, “Kinetic and energetic paradigms for dyesensitized solar cells: moving from the ideal to the real,” Accounts of Chemical Research, vol. 42, no. 11, pp. 1799–1808, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. L. Spanhel, H. Weller, and A. Henglein, “Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles,” Journal of the American Chemical Society, vol. 109, no. 22, pp. 6632–6635, 1987.
  66. R. Vogel, P. Hoyer, and H. Weller, “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors,” Journal of Physical Chemistry, vol. 98, no. 12, pp. 3183–3188, 1994.
  67. A. J. Nozik, “Quantum dot solar cells,” Physica E, vol. 14, no. 1-2, pp. 115–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. L. M. Peter, D. J. Riley, E. J. Tull, and K. G.U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots,” Chemical Communications, no. 10, pp. 1030–1031, 2002.
  69. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18737–18753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6664–6688, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” Journal of the American Chemical Society, vol. 127, no. 20, pp. 7632–7637, 2005. View at Publisher · View at Google Scholar · View at PubMed
  72. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Letters, vol. 11, no. 3, pp. 1111–1116, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. J. Tang, “Interaction between noble metal nanoparticles and light for contaminant decomposition,” ChemSusChem, vol. 3, no. 7, pp. 800–801, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2,” Journal of Physical Chemistry Letters, vol. 1, no. 13, pp. 2031–2036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S. I. Naya, A. Inoue, and H. Tada, “Visible-light activity enhancement of gold-nanoparticle-loaded titanium(IV) dioxide by preferential excitation of localized surface plasmon resonance,” ChemPhysChem, vol. 12, no. 15, pp. 2719–2723, 2011. View at Publisher · View at Google Scholar · View at PubMed
  76. H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Antonius, and D. Meissner, “Modified, amorphous titania—a hybrid semiconductor for detoxification and current generation by visible light,” Angewandte Chemie—International Edition, vol. 37, no. 21, pp. 3034–3036, 1998. View at Publisher · View at Google Scholar
  77. E. Vrachnou, N. Vlachopoulos, and M. Grätzel, “Efficient visible light sensitization of TiO2a by surface complexation with Fe(CN)64,” Journal of the Chemical Society, Chemical Communications, vol. 37, no. 12, pp. 868–870, 1987. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Khoudiakov, A. R. Parise, and B. S. Brunschwig, “Interfacial electron transfer in FeII(CN)64 sensitized TiO2 nanoparticles: a study of direct charge injection by electroabsorption spectroscopy,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4637–4642, 2003. View at Publisher · View at Google Scholar · View at PubMed
  79. W. Macyk, G. Stochel, and K. Szaciłowski, “Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with Iron(II) complexes: a comparative study,” Chemistry, vol. 13, no. 20, pp. 5676–5687, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. R. Beranek and H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochemistry Communications, vol. 9, no. 4, pp. 761–766, 2007. View at Publisher · View at Google Scholar
  81. R. Beranek and H. Kisch, “Tuning the optical and photoelectrochemical properties of surface-modified TiO2,” Photochemical and Photobiological Sciences, vol. 7, no. 1, pp. 40–48, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. Beranek, J. M. Macak, M. Gärtner, K. Meyer, and P. Schmuki, “Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes,” Electrochimica Acta, vol. 54, no. 9, pp. 2640–2646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Mitoraj and H. Kisch, “The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light,” Angewandte Chemie—International Edition, vol. 47, no. 51, pp. 9975–9978, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. H. Irie, K. Kamiya, T. Shibanuma et al., “Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10761–10766, 2009. View at Publisher · View at Google Scholar
  85. H. Yu, H. Irie, Y. Shimodaira et al., “An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst,” Journal of Physical Chemistry C, vol. 114, no. 39, pp. 16481–16487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Palmisano, V. Augugliaro, A. Sclafani, and M. Schiavello, “Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation,” Journal of Physical Chemistry, vol. 92, no. 23, pp. 6710–6713, 1988. View at Scopus
  87. A. Di Paola, G. Marcì, L. Palmisano et al., “Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol,” Journal of Physical Chemistry B, vol. 106, no. 3, pp. 637–645, 2002. View at Publisher · View at Google Scholar
  88. M. Anpo, “Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method,” Pure and Applied Chemistry, vol. 72, no. 9, pp. 1787–1792, 2000. View at Scopus
  89. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. T. Hirai, I. Tari, and J. Yamaura, “Titanium nitride oxide (TiN0.07O1.93) semiconductor electrodes for photoassisted oxidation of water,” Bulletin of the Chemical Society of Japan, vol. 51, no. 10, pp. 3057–3058, 1978.
  91. S. Sato, “Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region,” Chemical Physics Letters, vol. 123, no. 1-2, pp. 126–128, 1986.
  92. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. A. Ghicov, J. M. Macak, H. Tsuchiya et al., “TiO2 nanotube layers: dose effects during nitrogen doping by ion implantation,” Chemical Physics Letters, vol. 419, no. 4–6, pp. 426–429, 2006. View at Publisher · View at Google Scholar
  94. T. Lindgren, J. M. Mwabora, E. Avandaño et al., “Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering,” Journal of Physical Chemistry B, vol. 107, no. 24, pp. 5709–5716, 2003. View at Scopus
  95. H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” Journal of Physical Chemistry B, vol. 107, no. 23, pp. 5483–5486, 2003. View at Scopus
  96. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 Nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, “Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst,” Chemistry of Materials, vol. 17, no. 25, pp. 6349–6353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, vol. 81, no. 3, p. 454, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Ohno, “Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities,” Water Science and Technology, vol. 49, no. 4, pp. 159–163, 2004.
  100. M. Zheng, Y. Cui, X. Li, S. Liu, and Z. Tang, “Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites,” Journal of Electroanalytical Chemistry, vol. 656, no. 1-2, pp. 167–173, 2011. View at Publisher · View at Google Scholar
  101. G. L. Wang, J. J. Xu, and H. Y. Chen, “Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation,” Biosensors and Bioelectronics, vol. 24, no. 8, pp. 2494–2498, 2009. View at Publisher · View at Google Scholar · View at PubMed
  102. K. Szaciłowski and W. Macyk, “Chemical switches and logic gates based on surface modified semiconductors,” Comptes Rendus Chimie, vol. 9, no. 2, pp. 315–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Hebda, G. Stochel, K. Szaciłowski, and W. Macyk, “Optoelectronic switches based on wide band gap semiconductors,” Journal of Physical Chemistry B, vol. 110, no. 31, pp. 15275–15283, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. K. Szaciłowski, W. Macyk, and G. Stochel, “Light-driven OR and XOR programmable chemical logic gates,” Journal of the American Chemical Society, vol. 128, no. 14, pp. 4550–4551, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. L. F. O. Furtado, A. D. P. Alexiou, L. Gonçalves, H. E. Toma, and K. Araki, “TiO2-based light-driven XOR/INH logic gates,” Angewandte Chemie—International Edition, vol. 45, no. 19, pp. 3143–3146, 2006. View at Publisher · View at Google Scholar · View at PubMed
  106. R. Beranek and H. Kisch, “A hybrid semiconductor electrode for wavelength-controlled switching of the photocurrent direction,” Angewandte Chemie—International Edition, vol. 47, no. 7, pp. 1320–1322, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. H. Ming, Z. Ma, H. Huang et al., “Nanoporous TiO2 spheres with narrow pore size distribution and improved visible light photocatalytic abilities,” Chemical Communications, vol. 47, no. 28, pp. 8025–8027, 2011. View at Publisher · View at Google Scholar · View at PubMed
  108. P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angewandte Chemie—International Edition, vol. 50, no. 13, pp. 2904–2939, 2011. View at Publisher · View at Google Scholar · View at PubMed
  109. C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications, Springer, New York, NY, USA, 2009.
  110. W. P. Liao and J. J. Wu, “Wet chemical route to hierarchical TiO2 nanodendrite/ nanoparticle composite anodes for dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 9255–9262, 2011. View at Publisher · View at Google Scholar
  111. D. Fattakhova-Rohlfing, M. Wark, T. Brezesinski, B. M. Smarsly, and J. Rathouský, “Highly organized mesoporous TiO2 films with controlled crystallinity: a Li-insertion study,” Advanced Functional Materials, vol. 17, no. 1, pp. 123–132, 2007. View at Publisher · View at Google Scholar
  112. J. M. Szeifert, D. Fattakhova-Rohlfing, D. Georgiadou et al., “Brick and mortar strategy for the formation of highly crystalline mesoporous titania films from nanocrystalline building blocks,” Chemistry of Materials, vol. 21, no. 7, pp. 1260–1265, 2009. View at Publisher · View at Google Scholar
  113. J. Pan, G. Liu, G. Q. Lu, and H. M. Cheng, “On the true photoreactivity order of {001},{010}, and {101} facets of anatase TiO2 crystals,” Angewandte Chemie—International Edition, vol. 50, no. 9, pp. 2133–2137, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. H. G. Yang, C. H. Sun, S. Z. Qiao et al., “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature, vol. 453, no. 7195, pp. 638–641, 2008. View at Publisher · View at Google Scholar · View at PubMed
  115. J. I. L. Chen, E. Loso, N. Ebrahim, and G. A. Ozin, “Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals,” Journal of the American Chemical Society, vol. 130, no. 16, pp. 5420–5421, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. J. I. L. Chen, G. Von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Amplified photochemistry with slow photons,” Advanced Materials, vol. 18, no. 14, pp. 1915–1919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Sordello, C. Duca, V. Maurino, and C. Minero, “Photocatalytic metamaterials: TiO2 inverse opals,” Chemical Communications, vol. 47, no. 21, pp. 6147–6149, 2011. View at Publisher · View at Google Scholar · View at PubMed
  118. I. Bannat, K. Wessels, T. Oekermann, J. Rathousky, D. Bahnemann, and M. Wark, “Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures,” Chemistry of Materials, vol. 21, no. 8, pp. 1645–1653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chemical Society Reviews, vol. 41, no. 2, pp. 782–796, 2012.
  120. I. V. Lightcap, T. H. Kosel, and P. V. Kamat, “Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide,” Nano Letters, vol. 10, no. 2, pp. 577–583, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. W. Fan, Q. Lai, Q. Zhang, and Y. Wang, “Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution,” Journal of Physical Chemistry C, vol. 115, no. 21, pp. 10694–10701, 2011. View at Publisher · View at Google Scholar
  122. M. D. Archer and A. J. Nozik, Eds., Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Imperial College Press, 2008.
  123. S. Trasatti, “The absolute electrode potential: an explanatory note. Recommendations 1986,” Pure and Applied Chemistry, vol. 58, no. 7, pp. 955–966, 1986. View at Scopus
  124. V. Tripkovic, M. E. Björketun, E. Skúlason, and J. Rossmeisl, “Standard hydrogen electrode and potential of zero charge in density functional calculations,” Physical Review B, vol. 84, no. 11, Article ID 115452, 2011. View at Publisher · View at Google Scholar
  125. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, NY, USA, 1980.
  126. Y. V. Pleskov and Y. Y. Gurevich, Semiconductor Photoelectrochemistry, Plenum Press, New York, NY, USA, 1986.
  127. M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, and N. S. Lewis, “Principles and applications of semiconductor photoelectrochemistry,” Progress in Inorganic Chemistry, vol. 41, pp. 21–144, 1994.
  128. R. Memming, Semiconductor Electrochemistry, Wiley-VCH, Weinheim, Germany, 2001.
  129. K. Rajeshwar, “Fundamentals of semiconductor electrochemistry and photoelectrochemistry,” in Semiconductor Electrodes and Photoelectrochemistry, S. Licht, Ed., vol. 6, pp. 1–57, Wiley-VCH, Weinheim, Germany, 2003.
  130. P. Wardman, “Reduction potentials of one-electron couples involving free radicals in aqueous solution,” Journal of Physical and Chemical Reference Data, vol. 18, no. 4, pp. 1637–1755, 1989.
  131. R. B. Cundall, R. Rudham, and M. S. Salim, “Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile,” Journal of the Chemical Society, Faraday Transactions 1, vol. 72, pp. 1642–1651, 1976. View at Publisher · View at Google Scholar · View at Scopus
  132. D. T. Sawyer and M. J. Gibian, “The chemistry of superoxide ion,” Tetrahedron, vol. 35, no. 12, pp. 1471–1481, 1979. View at Scopus
  133. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, “Heterogeneous photocatalytic decomposition of phenol over anatase powder,” Bulletin of the Chemical Society of Japan, vol. 58, no. 7, pp. 2015–2022, 1985.
  134. H. Gerischer and A. Heller, “The role of oxygen in photooxidation of organic molecules on semiconductor particles,” Journal of Physical Chemistry, vol. 95, no. 13, pp. 5261–5267, 1991. View at Scopus
  135. C. Creutz, B. S. Brunschwig, and N. Sutin, “Interfacial charge-transfer absorption: 3. Application to semiconductor-molecule assemblies,” Journal of Physical Chemistry B, vol. 110, no. 50, pp. 25181–25190, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. W. R. Duncan and O. V. Prezhdo, “Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2,” Annual Review of Physical Chemistry, vol. 58, pp. 143–184, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. L. G. C. Rego and V. S. Batista, “Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors,” Journal of the American Chemical Society, vol. 125, no. 26, pp. 7989–7997, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. A. G. Agrios, K. A. Gray, and E. Weitz, “Narrow-band irradiation of a homologous series of chlorophenols on TiO2: charge-transfer complex formation and reactivity,” Langmuir, vol. 20, no. 14, pp. 5911–5917, 2004. View at Publisher · View at Google Scholar
  139. S. Kim and W. Choi, “Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 5143–5149, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. M. Bledowski, L. Wang, A. Ramakrishnan et al., “Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption,” Physical Chemistry Chemical Physics, vol. 13, no. 48, pp. 21511–21519, 2011. View at Publisher · View at Google Scholar · View at PubMed
  141. R. A. Smith, Semiconductors, Cambridge University Press, Cambridge, UK, 1959.
  142. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi, vol. 15, no. 2, pp. 627–637, 1966.
  143. P. K. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures, Clarendon Press, Oxford, UK, 1997.
  144. T. P. McLean, “The absorption-edge spectrum of semiconductors,” in Semiconductor Program, A. F. Gibson, Ed., vol. 5, pp. 53–102, Heywood, 1960.
  145. J. I. Pankove, Optical Processes in Semiconductors, Prentience-Hall, Upper Saddle River, NJ, USA, 1971.
  146. D. Dragoman and M. Dragoman, Optical Characterization of Solids, Springer, Berlin, Germany, 2001.
  147. P. Kubelka, “New contributions to the optics of intensely light-scattering materials,” Journal of the Optical Society of America, vol. 38, no. 5, pp. 448–457, 1948. View at Scopus
  148. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part II: nonhomogeneous layers,” Journal of the Optical Society of America, vol. 44, no. 4, pp. 330–335, 1954.
  149. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Zeitschrift fuer technische Physik, vol. 12, no. 11, pp. 593–601, 1931.
  150. W. W. Wendlandt and H. G. Hecht, “Reflectance Spectroscopy,” in Chemical Analysis, P. J. Elving and I. M. Kolthoff, Eds., vol. 21, p. 298, Interscience, New York, NY, USA, 1966.
  151. A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark, and B. A. Glowacki, “Evaluation of Bi-W-oxides for visible light photocatalysis,” Physica Status Solidi (A) Applications and Materials, vol. 203, no. 2, pp. 327–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. W. W. Gärtner, “Depletion-layer photoeffects in semiconductors,” Physical Review, vol. 116, no. 1, pp. 84–87, 1959. View at Publisher · View at Google Scholar · View at Scopus
  153. M. A. Butler, “Photoelectrolysis and physical properties of the semiconducting electrode tungsten trioxide,” Journal of Applied Physics, vol. 48, no. 5, pp. 1914–1920, 1977.
  154. S.-E. Lindquist, A. Hagfeldt, S. Sodergren, and H. Lindstrom, “Charge transport in nanostructured thin-film electrodes,” in Electrochemistry of Nanomaterials, G. Hodes, Ed., pp. 169–200, Wiley-VCH, Weinheim, Germany, 2001.
  155. K. Leitner, J. W. Schultze, and U. Stimming, “Photoelectrochemical investigations of passive films on titanium electrodes,” Journal of the Electrochemical Society, vol. 133, no. 8, pp. 1561–1568, 1986. View at Scopus
  156. U. Stimming, “Photoelectrochemical studies of passive films,” Electrochimica Acta, vol. 31, no. 4, pp. 415–429, 1986. View at Scopus
  157. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” Journal of Physical Chemistry, vol. 100, no. 31, pp. 13061–13078, 1996. View at Scopus
  158. A. J. Bard, “Design of semiconductor photoelectrochemical systems for solar energy conversion,” Journal of Physical Chemistry, vol. 86, no. 2, pp. 172–177, 1982. View at Scopus
  159. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995.
  160. G. Hodes, I. D. J. Howell, and L. M. Peter, “Nanocrystalline photoelectrochemical cells. A new concept in photovoltaic cells,” Journal of the Electrochemical Society, vol. 139, no. 11, pp. 3136–3140, 1992. View at Scopus
  161. A. Wahl, M. Ulmann, A. Carroy, and J. Augustynski, “Highly selective photo-oxidation reactions at nanocrystalline TiO2,” Journal of the Chemical Society, Chemical Communications, no. 19, pp. 2277–2278, 1994. View at Publisher · View at Google Scholar · View at Scopus
  162. J. J. Kelly and D. Vanmaekelbergh, “Charge carrier dynamics in nanoporous photoelectrodes,” Electrochimica Acta, vol. 43, no. 19-20, pp. 2773–2780, 1998. View at Scopus
  163. R. Solarska, I. Rutkowska, R. Morand, and J. Augustynski, “Photoanodic reactions occurring at nanostructured titanium dioxide films,” Electrochimica Acta, vol. 51, no. 11, pp. 2230–2236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. M. A. Butler and D. S. Ginley, “Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities,” Journal of the Electrochemical Society, vol. 125, no. 2, pp. 228–232, 1978. View at Scopus
  165. Y. Paz, “Preferential photodegradation—why and how?” Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 774–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Herrmann and H. P. Boehm, “Saure Hydroxylgruppen auf der Oberfläche,” Zeitschrift fuer Anorganische und Allgemeine Chemie, vol. 368, pp. 73–86, 1969.
  167. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, vol. 25, no. 3, pp. 494–500, 1991.
  168. G. Nagasubramanian, B. L. Wheeler, and A. J. Bard, “Semiconductor electrodes XLIX. Evidence for fermi level pinning and surface-state distributions from impedance measurements in acetonitrile solutions with various redox couples,” Journal of the Electrochemical Society, vol. 130, no. 8, pp. 1680–1688, 1983.
  169. L. M. Peter, E. A. Ponomarev, and D. J. Fermín, “Intensity-modulated photocurrent spectroscopy: reconciliation of phenomenological analysis with multistep electron transfer mechanisms,” Journal of Electroanalytical Chemistry, vol. 427, no. 1-2, pp. 79–96, 1997. View at Scopus
  170. D. Tafalla and P. Salvador, “Analysis of the photocurrent transient behaviour associated with flatband potential shifts during water splitting at n-TiO2 electrodes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 270, no. 1-2, pp. 285–295, 1989.
  171. J. J. Kelly and R. Memming, “The influence of surface recombination and trapping on the cathodic photocurrent at p-type [Group] III-V electrodes,” Journal of the Electrochemical Society, vol. 129, no. 4, pp. 730–738, 1982. View at Scopus
  172. L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” Journal of the American Chemical Society, vol. 118, no. 28, pp. 6716–6723, 1996. View at Publisher · View at Google Scholar · View at Scopus
  173. W. Kang and M. S. Hybertsen, “Quasiparticle and optical properties of rutile and anatase TiO2,” Physical Review B, vol. 82, no. 8, Article ID 085203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, and E. A. Carter, “First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes,” Physical Chemistry Chemical Physics, vol. 13, no. 37, pp. 16644–16654, 2011. View at Publisher · View at Google Scholar · View at PubMed
  175. Y. Wu, M. K. Y. Chan, and G. Ceder, “Prediction of semiconductor band edge positions in aqueous environments from first principles,” Physical Review B, vol. 83, no. 23, pp. 235–301, 2011. View at Publisher · View at Google Scholar
  176. D. Cahen and A. Kahn, “Electron energetics at surfaces and interfaces: concepts and experiments,” Advanced Materials, vol. 15, no. 4, pp. 271–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. K. Besocke and S. Berger, “Piezoelectric driven Kelvin probe for contact potential difference studies,” Review of Scientific Instruments, vol. 47, no. 7, pp. 840–842, 1976. View at Publisher · View at Google Scholar · View at Scopus
  178. L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment, and applications,” Surface Science Reports, vol. 37, no. 1, pp. 1–206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  179. L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surface and Interface Analysis, vol. 31, no. 10, pp. 954–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  180. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells,” Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2053–2059, 2000. View at Scopus
  181. A. Rothschild, Y. Komem, A. Levakov, N. Ashkenasy, and Y. Shapira, “Electronic and transport properties of reduced and oxidized nanocrystalline TiO2 films,” Applied Physics Letters, vol. 82, no. 4, pp. 574–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Bastide, D. Gal, D. Cahen, and L. Kronik, “Surface photovoltage measurements in liquids,” Review of Scientific Instruments, vol. 70, no. 10, pp. 4032–4036, 1999. View at Scopus
  183. F. Lenzmann, J. Krueger, S. Burnside et al., “Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states,” Journal of Physical Chemistry B, vol. 105, no. 27, pp. 6347–6352, 2001. View at Publisher · View at Google Scholar
  184. H. R. Sprünken, R. Schumacher, and R. N. Schindler, “Evaluation of the flat-band potentials by measurements of anodic/cathodic photocurrent transitions,” Faraday Discussions of the Chemical Society, vol. 70, pp. 55–66, 1980. View at Publisher · View at Google Scholar · View at Scopus
  185. H. O. Finklea, “Semiconductor electrode concepts and terminology,” Studies in Physical and Theoretical Chemistry, vol. 55, pp. 1–42, 1988.
  186. Y. V. Pleskov, V. M. Mazin, Y. E. Evstefeeva, V. P. Varnin, I. G. Teremetskaya, and V. A. Laptev, “Photoelectrochemical determination of the flatband potential of boron-doped diamond,” Electrochemical and Solid-State Letters, vol. 3, no. 3, pp. 141–143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Podborska, B. Gaweł, Ł. Pietrzak et al., “Anomalous photocathodic behavior of CdS within the urbach tail region,” Journal of Physical Chemistry C, vol. 113, no. 16, pp. 6774–6784, 2009. View at Publisher · View at Google Scholar
  188. K. Vinodgopal, S. Hotchandani, and P. V. Kamat, “Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol,” The Journal of Physical Chemistry, vol. 97, no. 35, pp. 9040–9044, 1993.
  189. D. Monllor-Satoca and R. Gómez, “Electrochemical method for studying the kinetics of electron recombination and transfer reactions in heterogeneous photocatalysis: the effect of fluorination on TiO2 nanoporous layers,” Journal of Physical Chemistry C, vol. 112, no. 1, pp. 139–147, 2008. View at Publisher · View at Google Scholar
  190. G. Rothenberger, D. Fitzmaurice, and M. Grätzel, “Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films,” Journal of Physical Chemistry, vol. 96, no. 14, pp. 5983–5986, 1992. View at Scopus
  191. G. Redmond and D. Fitzmaurice, “Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents,” Journal of Physical Chemistry, vol. 97, no. 7, pp. 1426–1430, 1993.
  192. D. Fitzmaurice, “Using spectroscopy to probe the band energetics of transparent nanocrystalline semiconductor films,” Solar Energy Materials and Solar Cells, vol. 32, no. 3, pp. 289–305, 1994. View at Scopus
  193. E. Burstein, “Anomalous optical absorption limit in InSb,” Physical Review, vol. 93, no. 3, pp. 632–633, 1954. View at Publisher · View at Google Scholar · View at Scopus
  194. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proceedings of the Physical Society Section B, vol. 67, no. 10, article 306, pp. 775–782, 1954. View at Publisher · View at Google Scholar · View at Scopus
  195. B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chemical Physics Letters, vol. 183, no. 1-2, pp. 89–93, 1991. View at Scopus
  196. J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes,” Physical Review B, vol. 59, no. 23, pp. 15374–15380, 1999. View at Scopus
  197. F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and J. Bisquert, “Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 758–768, 2003. View at Publisher · View at Google Scholar
  198. J. Bisquert and A. Zaban, “The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase,” Applied Physics A, vol. 77, no. 3-4, pp. 507–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. M. J. Cass, A. B. Walker, D. Martinez, and L. M. Peter, “Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 5100–5107, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  200. M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, “Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15429–15435, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  201. A. M. Roy, G. C. De, N. Sasmal, and S. S. Bhattacharyya, “Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement,” International Journal of Hydrogen Energy, vol. 20, no. 8, pp. 627–630, 1995.
  202. M. F. Finlayson, B. L. Wheeler, N. Kakuta et al., “Determination of flat-band position of CdS crystals, films, and powders by photocurrent and impedance techniques. Photoredox reaction mediated by intragap states,” Journal of Physical Chemistry, vol. 89, no. 26, pp. 5676–5681, 1985.
  203. J. R. White and A. J. Bard, “Electrochemical investigation of photocatalysis at CdS suspensions in the presence of methylviologen,” Journal of Physical Chemistry, vol. 89, no. 10, pp. 1947–1954, 1985.
  204. G. Chen, J. M. Zen, F. R.F. Fan, and A. J. Bard, “Electrochemical investigation of the energetics of irradiated FeS2 (pyrite) particles,” Journal of Physical Chemistry, vol. 95, no. 9, pp. 3682–3687, 1991.
  205. D. Mitoraj and H. Kisch, “Analysis of electronic and photocatalytic properties of semiconductor powders through wavelength-dependent quasi-Fermi level and reactivity measurements,” Journal of Physical Chemistry C, vol. 113, no. 49, pp. 20890–20895, 2009. View at Publisher · View at Google Scholar
  206. B. O'Regan, M. Grätzel, and D. Fitzmaurice, “Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode,” Journal of Physical Chemistry, vol. 95, no. 26, pp. 10525–10528, 1991.