About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 907129, 18 pages
http://dx.doi.org/10.1155/2011/907129
Review Article

Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis

1Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2Departments of Chemical Engineering and Chemistry, University of Virginia, Charlottesville, VA 22904-4741, USA

Received 27 May 2011; Accepted 27 July 2011

Academic Editor: Wolfgang Schmickler

Copyright © 2011 Andrzej Wieckowski and Matthew Neurock. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Cao, G. Q. Lu, A. Wieckowski, S. A. Wasileski, and M. Neurock, “Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach,” Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11622–11633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Janik, S. A. Wasileski, C. D. Taylor, and M. Neurock, “First principles simulation of the active sites and reaction environment in electrocatalysis,” in Fuel Cell Catalysis: A Surface Science Approach, M. Koper, Ed., John Wiley and Sons, 2008.
  3. M. Koper, Ed., Fuel Cell Catalysis: A Surface Science Approach, John Wiley and Sons, 2008.
  4. A. Wieckowski and J. K. Nørskov, Fuel Cell Science: Theory, Fundamentals, and Bio-Catalysis, John Wiley and Sons, 2010.
  5. R. A. van Santen and M. Neurock, “Theory of surface chemical reactivity,” in Handbook of Catalysis, H. K. G. Ertl and J. Weitcamp, Eds., pp. 942–958, Springer, 1997.
  6. R. A. van Santen and M. Neurock, Molecular Heterogeneous Catalysis: A Mechanistic and Computational Approach, VCH-Wiley, 2006.
  7. R. A. van Santen, M. Neurock, and S. G. Shetty, “Reactivity theory of transition-metal surfaces: a brønsted-evans- polanyi linear activation energy-free-energy analysis,” Chemical Reviews, vol. 110, no. 4, pp. 2005–2048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Bligaard and J. K. Nørskov, “Ligand effects in heterogeneous catalysis and electrochemistry,” Electrochimica Acta, vol. 52, no. 18, pp. 5512–5516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Nørskov, “Computational high-throughput screening of electrocatalytic materials for hydrogen evolution,” Nature Materials, vol. 5, no. 11, pp. 909–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Liu, A. Logadottir, and J. K. Nørskov, “Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn,” Electrochimica Acta, vol. 48, no. 25-26, pp. 3731–3742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Nørskov, J. Rossmeisl, A. Logadottir et al., “Origin of the overpotential for oxygen reduction at a fuel-cell cathode,” Journal of Physical Chemistry B, vol. 108, no. 46, pp. 17886–17892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, and M. Neurock, “Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111),” Journal of Physical Chemistry B, vol. 110, no. 43, pp. 21833–21839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. Anderson, “O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths,” Electrochimica Acta, vol. 47, no. 22-23, pp. 3759–3763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. B. Anderson and Y. Cai, “Calculation of the Tafel plot for H2 oxidation on Pt(100) from potential-dependent activation energies,” Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19917–19920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Anderson, J. Roques, S. Mukerjee, V. S. Murthi, N. M. Markovic, and V. Stamenkovic, “Activation energies for oxygen reduction on platinum alloys: theory and experiment,” Journal of Physical Chemistry B, vol. 109, no. 3, pp. 1198–1203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Roques and A. B. Anderson, “Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface,” Journal of the Electrochemical Society, vol. 151, no. 11, pp. E340–E347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Roques, A. B. Anderson, V. S. Murthi, and S. Mukerjee, “Potential shift for OH(ads) formation on the Pt skin on Pt3Co(111) electrodes in acid theory and experiment,” Journal of the Electrochemical Society, vol. 152, no. 6, pp. E193–E199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Sidik and A. B. Anderson, “Density functional theory study of O2 electroreduction when bonded to a Pt dual site,” Journal of Electroanalytical Chemistry, vol. 528, no. 1-2, pp. 69–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lamm, H. Gasteiger, and W. Vielstich, Eds., Fuel Cell Handbook, Vol. 2, Electrocatalysis, Wiley-VCH, 2003.
  20. T. D. Jarvi and E. M. Stuve, “Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces,” in Electrocatalysis, J. Lipkowski and P. N. Ross, Eds., Wiley-VCH, 1998.
  21. G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surface Science, vol. 585, no. 1-2, pp. 3–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Babu, H. S. Kim, S. T. Kuk et al., “Activation of nanoparticle Pt-Ru fuel cell catalysts by heat treatment: A195Pt NMR and electrochemical study,” Journal of Physical Chemistry B, vol. 109, no. 36, pp. 17192–17196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Yano, J. Inukai, H. Uchida et al., “Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study,” Physical Chemistry Chemical Physics, vol. 8, no. 42, pp. 4932–4939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kobayashi, P. K. Babu, J. H. Chung, E. Oldfield, and A. Wieckowski, “Coverage dependence of CO surface diffusion on Pt nanoparticles: an EC-NMR study,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 7078–7083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Maniguet, R. J. Mathew, and A. E. Russell, “EXAFS of carbon monoxide oxidation on supported Pt fuel cell electrocatalysts,” Journal of Physical Chemistry B, vol. 104, no. 9, pp. 1998–2004, 2000. View at Scopus
  26. J. McBreen and S. Mukerjee, “In situ X-ray absorption studies of a Pt-Ru electrocatalyst,” Journal of the Electrochemical Society, vol. 142, no. 10, pp. 3399–3404, 1995. View at Scopus
  27. F. J. Scott, C. Roth, and D. E. Ramaker, “Kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando X-ray absorption near edge spectroscopy,” Journal of Physical Chemistry C, vol. 111, no. 30, pp. 11403–11413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. J. Scott, S. Mukerjee, and D. E. Ramaker, “CO coverage/oxidation correlated with PtRu electrocatalyst particle morphology in 0.3 M methanol by in situ XAS,” Journal of the Electrochemical Society, vol. 154, no. 5, pp. A396–A406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Roth, N. Benker, T. Buhrmester et al., “Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell,” Journal of the American Chemical Society, vol. 127, no. 42, pp. 14607–14615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Samjeske, A. Miki, S. Ye, and M. Osawa, “Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16559–16566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Samjeske, A. Miki, and M. Osawa, “Electrocatalytic oxidation of formaldehyde on platinum under galvanostatic and potential sweep conditions studied by time-resolved surface-enhanced infrared spectroscopy,” Journal of Physical Chemistry C, vol. 111, no. 41, pp. 15074–15083, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. B. Anderson, “Theory at the electrochemical interface: reversible potentials and potential-dependent activation energies,” Electrochimica Acta, vol. 48, no. 25-26, pp. 3743–3749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. B. Anderson, Y. Cai, R. A. Sidik, and D. B. Kang, “Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum,” Journal of Electroanalytical Chemistry, vol. 580, no. 1, pp. 17–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. B. Anderson, N. M. Neshev, R. A. Sidik, and P. Shiller, “Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory,” Electrochimica Acta, vol. 47, no. 18, pp. 2999–3008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Cai and A. B. Anderson, “The reversible hydrogen electrode: potential-dependent activation energies over platinum from quantum theory,” Journal of Physical Chemistry B, vol. 108, no. 28, pp. 9829–9833, 2004. View at Scopus
  36. E. Santos, A. Lundin, K. Potting, P. Quaino, and W. Schmickler, “Model for the electrocatalysis of hydrogen evolution,” Physical Review B, vol. 79, no. 23, Article ID 235436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Santos and W. Schmickler, “Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction,” Electrochimica Acta, vol. 53, no. 21, pp. 6149–6156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Wilhelm, W. Schmickler, R. R. Nazmutdinov, and E. Spohr, “A model for proton transfer to metal electrodes,” Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10814–10826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Filhol and M. Neurock, “Elucidation of the electrochemical activation of water over Pd by first principles,” Angewandte Chemie, vol. 45, no. 3, pp. 403–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Taylor, R. G. Kelly, and M. Neurock, “First-principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H2O interface,” Journal of the Electrochemical Society, vol. 153, no. 12, pp. E207–E214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. C. D. Taylor and M. Neurock, “Theoretical insights into the structure and reactivity of the aqueous/metal interface,” Current Opinion in Solid State and Materials Science, vol. 9, no. 1-2, pp. 49–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. D. Taylor, M. Neurock, and J. R. Scully, “First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces,” Journal of the Electrochemical Society, vol. 155, no. 8, pp. C407–C414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. D. Taylor, S. A. Wasileski, J. S. Filhol, and M. Neurock, “First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure,” Physical Review B, vol. 73, no. 16, Article ID 165402, pp. 1–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, and T. Ikeshoji, “Structure of the water/platinum interface—a first principles simulation under bias potential,” Physical Chemistry Chemical Physics, vol. 10, no. 25, pp. 3609–3612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, and T. Ikeshoji, “Electrode dynamics from first principles,” Journal of the Physical Society of Japan, vol. 77, no. 2, Article ID 024802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Jinnouchi and A. B. Anderson, “Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory,” Physical Review B, vol. 77, no. 24, Article ID 245417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Rossmeisl, E. Skulason, M. E. Bjorketun, V. Tripkovic, and J. K. Nørskov, “Modeling the electrified solid-liquid interface,” Chemical Physics Letters, vol. 466, no. 1–3, pp. 68–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Neurock, W. Vielstich, H. A. Gasteiger, and H. Yokokawa, “First principles modeling for the electrooxidation of small molecules,” in Handbook of Fuel Cells, W. Vielstich, H. A. Gasteiger, and H. Yokokawa, Eds., John Wiley and Sons, 2009.
  49. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996. View at Scopus
  51. G. Henkelman and H. Jónsson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” Journal of Chemical Physics, vol. 113, no. 22, pp. 9978–9985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Henkelman, B. P. Uberuaga, and H. Jónsson, “Climbing image nudged elastic band method for finding saddle points and minimum energy paths,” Journal of Chemical Physics, vol. 113, no. 22, pp. 9901–9904, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Henkelman and H. Jónsson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives,” Journal of Chemical Physics, vol. 111, no. 15, pp. 7010–7022, 1999. View at Scopus
  54. R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, “Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts,” Applied Catalysis B, vol. 43, no. 1, pp. 13–26, 2003. View at Publisher · View at Google Scholar
  55. P. Gallezot, N. Nicolaus, G. Fleche, and A. Perrard, “Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor,” Journal of Catalysis, vol. 180, no. 1, pp. 51–55, 1998. View at Scopus
  56. D. K. Sohounloue, C. Montassier, and J. Barbier, “Catalytic hydrogenolysis of sorbitol,” Reaction Kinetics and Catalysis Letters, vol. 22, no. 3-4, pp. 391–397, 1983. View at Publisher · View at Google Scholar · View at Scopus
  57. M. B. Valenzuela, C. W. Jones, and P. K. Agrawal, “Batch aqueous-phase reforming of woody biomass,” Energy and Fuels, vol. 20, no. 4, pp. 1744–1752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Dimitratos, C. Messi, F. Porta, L. Prati, and A. Villa, “Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water,” Journal of Molecular Catalysis A, vol. 256, no. 1-2, pp. 21–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. R. D. Cortright, R. R. Davda, and J. A. Dumesic, “Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water,” Nature, vol. 418, no. 6901, pp. 964–967, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright, and J. A. Dumesic, “Aqueous-phase reforming of ethylene glycol over supported platinum catalysts,” Catalysis Letters, vol. 88, no. 1-2, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. E. P. Maris, W. C. Ketchie, V. Oleshko, and R. J. Davis, “Metal particle growth during glucose hydrogenation over Ru/SiO2 evaluated by X-ray absorption spectroscopy and electron microscopy,” Journal of Physical Chemistry B, vol. 110, no. 15, pp. 7869–7876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. E. P. Maris, W. C. Ketchie, M. Murayama, and R. J. Davis, “Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts,” Journal of Catalysis, vol. 251, no. 2, pp. 281–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. W. C. Ketchie, E. P. Maris, and R. J. Davis, “In-situ X-ray absorption spectroscopy of supported Ru catalysts in the aqueous phase,” Chemistry of Materials, vol. 19, no. 14, pp. 3406–3411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0.DEG.C,” Chemistry Letters, vol. 16, no. 2, pp. 405–408, 1987.
  65. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” Journal of Catalysis, vol. 115, no. 2, pp. 301–309, 1989. View at Scopus
  66. G. C. Bond, C. Louis, and D. T. Thompson, Catalysis by Gold, Imperial College Press, London, UK, 2006.
  67. R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. Freund, “Surface chemistry of catalysis by gold,” Gold Bulletin, vol. 37, no. 1-2, pp. 72–124, 2004. View at Scopus
  68. M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science, vol. 281, no. 5383, pp. 1647–1650, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Lopez, T. V. W. Janssens, B. S. Clausen et al., “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation,” Journal of Catalysis, vol. 223, no. 1, pp. 232–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,” Science, vol. 301, no. 5635, pp. 935–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Guzman and B. C. Gates, “Simultaneous presence of cationic and reduced gold in functioning MgO-supported CO oxidation catalysts: evidence from X-ray absorption spectroscopy,” Journal of Physical Chemistry B, vol. 106, no. 31, pp. 7659–7665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. L. M. Molina and B. Hammer, “Active role of oxide support during CO oxidation at Au/MgO,” Physical Review Letters, vol. 90, no. 20, 4 pages, 2003. View at Scopus
  73. C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang, and H. H. Kung, “Nature of the active site for CO oxidation on highly active Au/γ-Al2O3,” Applied Catalysis A, vol. 232, no. 1-2, pp. 159–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. H. H. Kung, M. C. Kung, and C. K. Costello, “Supported Au catalysts for low temperature CO oxidation,” Journal of Catalysis, vol. 216, no. 1-2, pp. 425–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. W. B. Kim, T. Voitl, G. J. Rodriguez-Rivera, and J. A. Dumesic, “Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts,” Science, vol. 305, no. 5688, pp. 1280–1283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. A. Sanchez-Castillo, C. Couto, W. B. Kim, and J. A. Dumesic, “Gold-nanotube membranes for the oxidation of CO at gas-water interfaces,” Angewandte Chemie, vol. 43, no. 9, pp. 1140–1142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. W. C. Ketchie, Y. L. Fang, M. S. Wong, M. Murayama, and R. J. Davis, “Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol,” Journal of Catalysis, vol. 250, no. 1, pp. 94–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. W. C. Ketchie, M. Murayama, and R. J. Davis, “Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts,” Topics in Catalysis, vol. 44, no. 1-2, pp. 307–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. N. M. Markoví and P. N. Ross, “Surface science studies of model fuel cell electrocatalysts,” Surface Science Reports, vol. 45, no. 4–6, pp. 117–229, 2002. View at Scopus
  80. F. B. de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, and R. J. Behm, “CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces—a combined STM and TPD/TPR study,” Surface Science, vol. 411, no. 3, pp. 249–262, 1998. View at Scopus
  81. H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, “Electro-oxidation of small organic molecules on well-characterized PtRu alloys,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1825–1832, 1994. View at Scopus
  82. N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. Jiang, I. Villegas, and M. J. Weaver, “Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces,” Electrochimica Acta, vol. 40, no. 1, pp. 91–98, 1995. View at Scopus
  83. S. Desai and M. Neurock, “A first principles analysis of CO oxidation over Pt and Pt 66.7%Ru33.3% (111) surfaces,” Electrochimica Acta, vol. 48, no. 25-26, pp. 3759–3773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. S. K. Desai and M. Neurock, “First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy,” Physical Review B, vol. 68, no. 7, Article ID 075420, pp. 754201–754207, 2003. View at Scopus
  85. B. E. Hayden, D. Pletcher, M. E. Rendall, and J. P. Suchsland, “CO oxidation on gold in acidic environments: particle size and substrate effects,” Journal of Physical Chemistry C, vol. 111, no. 45, pp. 17044–17051, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. B. E. Hayden, D. Pletcher, and J. P. Suchsland, “Enhanced activity for electrocatalytic oxidation of carbon monoxide on titania-supported gold nanoparticles,” Angewandte Chemie, vol. 46, no. 19, pp. 3530–3532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. L. Roberts and D. T. Sawyer, “Electrochemical oxidation of carbon monoxide at gold electrodes,” Electrochimica Acta, vol. 10, no. 10, pp. 989–1000, 1965. View at Scopus
  88. P. Rodriguez, N. Garcia-Araez, and M. T. M. Koper, “Self-promotion mechanism for CO electrooxidation on gold,” Physical Chemistry Chemical Physics, vol. 12, no. 32, pp. 9373–9380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Rodriguez, N. Garcia-Araez, A. Koverga, S. Frank, and M. T. M. Koper, “CO electroxidation on gold in alkaline media: a combined electrochemical, spectroscopic, and DFT study,” Langmuir, vol. 26, no. 14, pp. 12425–12432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. I. X. Green, W. Tang, M. Neurock, and J. T. Yates Jr., “Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst,” Science, vol. 333, no. 6043, pp. 736–739, 2011.
  91. M. Neurock, D. Hibbitts, and J. A. Dumesic, “Mechanistic insights into the role of water on the oxidation of CO over Au,” to be submitted, 2011.
  92. N. Dimitratos, J. A. Lopez-Sanchez, J. M. Anthonykutty et al., “Oxidation of glycerol using gold-palladium alloy-supported nanocrystals,” Physical Chemistry Chemical Physics, vol. 11, no. 25, pp. 4952–4961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Dimitratos, J. A. Lopez-Sanchez, S. Meenakshisundaram et al., “Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals,” Green Chemistry, vol. 11, no. 8, pp. 1209–1216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. M. D. Hughes, Y. J. Xu, P. Jenkins et al., “Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions,” Nature, vol. 437, no. 7062, pp. 1132–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. G. J. Hutchings, S. Carrettin, P. Landon et al., “New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst,” Topics in Catalysis, vol. 38, no. 4, pp. 223–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Sankar, N. Dimitratos, D. W. Knight et al., “Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles,” ChemSusChem, vol. 2, no. 12, pp. 1145–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. B. N. Zope and R. J. Davis, “Influence of reactor configuration on the selective oxidation of glycerol over Au/TiO2,” Topics in Catalysis, vol. 52, no. 3, pp. 269–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. B. N. Zope, D. D. Hibbitts, M. Neurock, and R. J. Davis, “Reactivity of the gold/water interface during selective oxidation catalysis,” Science, vol. 330, no. 6000, pp. 74–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. J. S. Spendelow, P. K. Babu, and A. Wieckowski, “Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium,” Current Opinion in Solid State and Materials Science, vol. 9, no. 1-2, pp. 37–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. J. S. Spendelow and A. Wieckowski, “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media,” Physical Chemistry Chemical Physics, vol. 9, no. 21, pp. 2654–2675, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. Z. Borkowska, A. Tymosiak-Zielinska, and G. Shul, “Electrooxidation of methanol on polycrystalline and single crystal gold electrodes,” Electrochimica Acta, vol. 49, no. 8, pp. 1209–1220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Parpot, A. P. Bettencourt, A. M. Carvalho, and E. M. Belgsir, “Biomass conversion: attempted electrooxidation of lignin for vanillin production,” Journal of Applied Electrochemistry, vol. 30, no. 6, pp. 727–731, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Parpot, A. P. Bettencourt, G. Chamoulaud, K. B. Kokoh, and E. M. Belgsir, “Electrochemical investigations of the oxidation-reduction of furfural in aqueous medium—application to electrosynthesis,” Electrochimica Acta, vol. 49, no. 3, pp. 397–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Parpot, N. Nunes, and A. P. Bettencourt, “Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: structure-reactivity relationship,” Journal of Electroanalytical Chemistry, vol. 596, no. 1, pp. 65–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Parpot, S. G. Pires, and A. P. Bettencourt, “Electrocatalytic oxidation of D-galactose in alkaline medium,” Journal of Electroanalytical Chemistry, vol. 566, no. 2, pp. 401–408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Parpot, P. R. B. Santos, and A. P. Bettencourt, “Electro-oxidation of d-mannose on platinum, gold and nickel electrodes in aqueous medium,” Journal of Electroanalytical Chemistry, vol. 610, no. 2, pp. 154–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. S. H. Yan, S. C. Zhang, Y. Lin, and G. R. Liu, “Electrocatalytic performance of gold nanoparticles supported on activated carbon for methanol oxidation in alkaline solution,” Journal of Physical Chemistry C, vol. 115, no. 14, pp. 6986–6993, 2011. View at Publisher · View at Google Scholar
  108. P. A. Christensen, A. Hamnett, and D. Linares-Moya, “Oxygen reduction and fuel oxidation in alkaline solution,” Physical Chemistry Chemical Physics, vol. 13, no. 12, pp. 5206–5214, 2011. View at Publisher · View at Google Scholar
  109. D. Kardash, C. Korzeniewski, and N. Markovic, “Effects of thermal activation on the oxidation pathways of methanol at bulk Pt-Ru alloy electrodes,” Journal of Electroanalytical Chemistry, vol. 500, no. 1-2, pp. 518–523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. A. V. Tripkovi, K. D. Popovi, B. N. Grgur, B. Blizanac, P. N. Ross, and N. M. Markovi, “Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions,” Electrochimica Acta, vol. 47, no. 22-23, pp. 3707–3714, 2002. View at Publisher · View at Google Scholar
  111. F. Colmati, G. Tremiliosi-Filho, E. R. Gonzalez, A. Berna, E. Herrero, and J. M. Feliu, “The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes,” Physical Chemistry Chemical Physics, vol. 11, no. 40, pp. 9114–9123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. F. Colmati, G. Tremiliosi-Filho, E. R. Gonzalez, A. Berna, E. Herrero, and J. M. Feliu, “Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes,” Faraday Discussions, vol. 140, pp. 379–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. V. Del Colle, A. Berna, G. Tremiliosi-Filho, E. Herrero, and J. M. Feliu, “Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies,” Physical Chemistry Chemical Physics, vol. 10, no. 25, pp. 3766–3773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Souza-Garcia, E. Herrero, and J. M. Feliu, “Breaking the C-C bond in the ethanol oxidation reaction on platinum electrodes: effect of steps and ruthenium adatoms,” ChemPhysChem, vol. 11, no. 7, pp. 1391–1394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Ozturk et al., “Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction,” Catalysis Today, vol. 154, no. 1-2, pp. 92–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. S. C. S. Lai, S. E. F. Kleyn, V. Rosca, and M. T. M. Koper, “Mechanism of the dissociation and electrooxidation of ethanol and acetaldehyde on platinum as studied by SERS,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 19080–19087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. S. C. S. Lai and M. T. M. Koper, “Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes,” Faraday Discussions, vol. 140, pp. 399–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Physical Chemistry Chemical Physics, vol. 11, no. 44, pp. 10446–10456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. S. C. S. Lai and M. T. M. Koper, “The influence of surface structure on selectivity in the ethanol electro-oxidation reaction on platinum,” Journal of Physical Chemistry Letters, vol. 1, no. 7, pp. 1122–1125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Neurock, M. Janik, and A. Wieckowski, “A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt,” Faraday Discussions, vol. 140, no. 1, pp. 363–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. R. Brankovic, J. X. Wang, Y. Zhu, R. Sabatini, J. McBreen, and R. R. Adzic, “Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces,” Journal of Electroanalytical Chemistry, vol. 524-525, pp. 231–241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Iwasita, “Electrocatalysis of methanol oxidation,” Electrochimica Acta, vol. 47, no. 22-23, pp. 3663–3674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. W. C. Ketchie, M. Murayama, and R. J. Davis, “Selective oxidation of glycerol over carbon-supported AuPd catalysts,” Journal of Catalysis, vol. 250, no. 2, pp. 264–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. A. T. Governo, L. Proenca, P. Parpot, M. I. S. Lopes, and I. T. E. Fonseca, “Electro-oxidation of D-xylose on platinum and gold electrodes in alkaline medium,” Electrochimica Acta, vol. 49, no. 9-10, pp. 1535–1545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Kwon and M. T. M. Koper, “Combining voltammetry with HPLC: application to electro-oxidation of glycerol,” Analytical Chemistry, vol. 82, no. 13, pp. 5420–5424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. Z. W. Liu, F. Peng, H. J. Wang, H. Yu, W. X. Zheng, and J. A. Yang, “Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium,” Angewandte Chemie, vol. 50, no. 14, pp. 3257–3261, 2011. View at Publisher · View at Google Scholar
  127. A. C. Chen and J. Lipkowski, “Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode,” Journal of Physical Chemistry B, vol. 103, no. 4, pp. 682–691, 1999. View at Scopus
  128. S. Desai, “Theoretical investigation of solution effects on metal catalyzed hydrogenation and oxidation processes,” in Department of Chemical Engineering, University of Virginia, 2002.
  129. F. T. Wagner and T. E. Moylan, “Generation of surface hydronium from water and hydrogen coadsorbed on Pt(111),” Surface Science, vol. 206, no. 1-2, pp. 187–202, 1988. View at Scopus
  130. N. Kizhakevariam and E. M. Stuve, “Coadsorption of water and hydrogen on Pt(100): formation of adsorbed hydronium ions,” Surface Science, vol. 275, no. 3, pp. 223–236, 1992. View at Scopus