About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2011 (2011), Article ID 947637, 21 pages
http://dx.doi.org/10.1155/2011/947637
Review Article

Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

1Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
2Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Received 29 April 2011; Accepted 28 June 2011

Academic Editor: Milan M. Jaksic

Copyright © 2011 Marcin Opallo and Renata Bilewicz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. dos Santos, V. Climent, C. F. Blanford, and F. A. Armstrong, “Mechanistic studies of the “blue” Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction,” Physical Chemistry Chemical Physics, vol. 12, no. 42, pp. 13962–13974, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. S. Tsujimura, Y. Kamitaka, and K. Kano, “Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator,” Fuel Cells, vol. 7, no. 6, pp. 463–469, 2007. View at Publisher · View at Google Scholar
  3. Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, “Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis,” Physical Chemistry Chemical Physics, vol. 9, no. 15, pp. 1793–1801, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. G. Gupta, C. Lau, B. Branch, V. Rajendran, D. Ivnitski, and P. Atanassov, “Direct bio-electrocatalysis by multi-copper oxidases: gas-diffusion laccase-catalyzed cathodes for biofuel cells,” Electrochimica Acta. In press. View at Publisher · View at Google Scholar
  5. W. Nogala, A. Celebanska, K. Szot, G. Wittstock, and M. Opallo, “Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase,” Electrochimica Acta, vol. 55, no. 20, pp. 5719–5724, 2010. View at Publisher · View at Google Scholar
  6. A. T. Yahiro, S. M. Lee, and D. O. Kimble, “Bioelectrochemistry. I. Enzyme utilizing bio-fuel cell studies,” Biochimica Biophysica Acta, vol. 88, no. 2, pp. 375–383, 1964.
  7. E. I. Solomon, U. M. Sundaram, and T. E. Machonkin, “Multicopper oxidases and oxygenases,” Chemical Reviews, vol. 96, no. 7, pp. 2563–2605, 1996.
  8. F. A. Armstrong, “The importance of enzymes: benchmarks for electrocatalysis,” in Fuel Cells. Theory, Fundamentals and Electrocatalysis, A. Wieckowski, Ed., pp. 237–257, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  9. R. Bilewicz and M. Opallo, “Biocathodes for dioxygen reduction in biofuel cells,” in Fuel Cells. Theory, Fundamentals and Electrocatalysis, A. Wieckowski, Ed., pp. 169–215, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  10. R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel cells and their development,” Biosensors & Bioelectronics, vol. 21, no. 11, pp. 2015–2045, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. H. Shin, C. Kang, and A. Heller, “Irreversible and reversible deactivation of bilirubin oxidase by urate,” Electroanalysis, vol. 19, no. 6, pp. 638–643, 2007. View at Publisher · View at Google Scholar
  12. A. Lesniewski, J. Niedziolka-Jonsson, C. Rizzi, L. Gaillon, J. Rogalski, and M. Opallo, “Carbon ceramic nanoparticulate film electrode prepared from oppositely charged particles by layer-by-layer approach,” Electrochemistry Communications, vol. 12, no. 1, pp. 83–85, 2010. View at Publisher · View at Google Scholar
  13. K. Szot, J. D. Watkins, S. D. Bull, F. Marken, and M. Opallo, “Three dimensional film electrode prepared from oppositely charged carbon nanoparticles as efficient enzyme host,” Electrochemistry Communications, vol. 12, no. 6, pp. 737–739, 2010. View at Publisher · View at Google Scholar
  14. E. Nazaruk, K. Sadowska, K. Madrak, J. F. Biernat, J. Rogalski, and R. Bilewicz, “Composite bioelectrodes based on lipidic cubic phase with carbon nanotube network,” Electroanalysis, vol. 21, no. 3-5, pp. 507–511, 2009. View at Publisher · View at Google Scholar
  15. K. Sadowska, K. P. Roberts, R. Wiser, J. F. Biernat, E. Jabłonowska, and R. Bilewicz, “Synthesis, characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone,” Carbon, vol. 47, no. 6, pp. 1501–1510, 2009. View at Publisher · View at Google Scholar
  16. A. Zloczewska, M. Jönsson-Niedziolka, J. Rogalski, and M. Opallo, “Vertically aligned carbon nanotube film electrodes for bioelectrocatalytic dioxygen reduction,” Electrochimica Acta, vol. 56, no. 11, pp. 3947–3953, 2011. View at Publisher · View at Google Scholar
  17. X. Li, L. Zhang, L. Su, T. Ohsaka, and L. Mao, “A miniature glucose/O2 biofuel cell with a high tolerance against ascorbic acid,” Fuel Cells, vol. 9, no. 1, pp. 85–91, 2009. View at Publisher · View at Google Scholar
  18. S. Rubenwolf, O. Strohmeier, A. Kloke, S. Kerzenmacher, R. Zengerle, and F. von Stetten, “Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior,” Biosensors & Bioelectronics, vol. 26, no. 2, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. L. Deng, L. Shang, Y. Wang, T. Wang, H. Chen, and S. Dong, “Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell,” Electrochemistry Communications, vol. 10, no. 7, pp. 1012–1015, 2008. View at Publisher · View at Google Scholar
  20. T. Miyake, S. Yoshino, T. Yamada, K. Hata, and M. Nishizawa, “Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells,” Journal of the American Chemical Society, vol. 133, no. 13, pp. 5129–5134, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. M. Jönsson-Niedziolka, A. Kaminska, and M. Opallo, “Pyrene-functionalised single-walled carbon nanotubes for mediatorless dioxygen bioelectrocatalysis,” Electrochimica Acta, vol. 55, no. 28, pp. 8744–8750, 2010. View at Publisher · View at Google Scholar
  22. A. V. Lyashenko, I. Bento, V. N. Zaitsev et al., “X-ray structural studies of the fungal laccase from Cerrena maxima,” Journal of Biological Inorganic Chemistry, vol. 11, no. 8, pp. 963–973, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. K. Mizutani, M. Toyoda, K. Sagara et al., “X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal,” Acta Crystallographica Section F, vol. 66, no. 7, pp. 765–770, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. C. F. Blanford, C. E. Foster, R. S. Heath, and F. A. Armstrong, “Efficient electrocatalytic oxygen reduction by the “blue” copper oxidase, laccase, directly attached to chemically modified carbons,” Faraday Discussions, vol. 140, pp. 319–335, 2008. View at Publisher · View at Google Scholar
  25. C. F. Blanford, R. S. Heath, and F. A. Armstrong, “A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface,” Chemical Communications, no. 17, pp. 1710–1712, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Sosna, J. M. Chrétien, J. D. Kilburn, and P. N. Bartlett, “Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation,” Physical Chemistry Chemical Physics, vol. 12, no. 34, pp. 10018–10026, 2010. View at Publisher · View at Google Scholar · View at PubMed
  27. O. Lazarus, T. W. Woolerton, A. Parkin et al., “Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets,” Journal of the American Chemical Society, vol. 131, no. 40, pp. 14154–14155, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. K. A. Vincent, X. Li, C. F. Blanford, N. A. Belsey, J. H. Weiner, and F. A. Armstrong, “Enzymatic catalysis on conducting graphite particles,” Nature Chemical Biology, vol. 3, no. 12, pp. 761–762, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, “Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle,” Science, vol. 299, no. 5614, pp. 1877–1881, 2003. View at Publisher · View at Google Scholar · View at PubMed
  30. R. Tel-Vered, H. B. Yildiz, Y. M. Yan, and I. Willner, “Plugging into enzymes with light: photonic “wiring” of enzymes with electrodes for photobiofuel cells,” Small, vol. 6, no. 15, pp. 1593–1597, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. K. Stolarczyk, M. Sepelowska, D. Lyp, et al., “Hybrid biofuel cell based on arylated carbon nanotubes,” submitted to Bioelectrochemistry.
  32. K. Stolarczyk, K. Zelechowska, J. Rogalski, J. F. Biernat, and R. Bilewicz, “Arylated carbon nanotubes for biocatalytic reduction of dioxygen,” submitted to Electrochimica Acta.
  33. H. L. Pang, J. Liu, D. Hu, X. H. Zhang, and J. H. Chen, “Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction,” Electrochimica Acta, vol. 55, no. 22, pp. 6611–6616, 2010. View at Publisher · View at Google Scholar
  34. K. Schubert, G. Goebel, and F. Lisdat, “Bilirubin oxidase bound to multi-walled carbon nanotube-modified gold,” Electrochimica Acta, vol. 54, no. 11, pp. 3033–3038, 2009. View at Publisher · View at Google Scholar
  35. Y. M. Yan, I. Baravik, R. Tel-Vered, and I. Willner, “An ethanol/O2 biofuel cell based on an electropolymerized bilirubin oxidase/Pt nanoparticle bioelectrocatalytic O2-reduction cathode,” Advanced Materials, vol. 21, no. 42, pp. 4275–4279, 2009. View at Publisher · View at Google Scholar
  36. M. R. Tarasevich, A. I. Yaropolov, V. A. Bognanovskaya, and S. D. Varfolomev, “Ways of using enzymes for acceleration of electrochemical reactions,” Bioelectrochemistry Bioenergetics, vol. 6, no. 4, pp. 587–597, 1979.
  37. I. V. Berezin, V. A. Bogdanovskaya, S. D. Varfolomeev, M. R. Tarasevich, and A. I. Yaropolov, “Bioelectrocatalysis. The oxygen reduction potential in the presence of laccase,” Doklady Akademii Nauk SSSR, vol. 240, no. 3, pp. 615–618, 1978.
  38. N. Mano, H. H. Kim, and A. Heller, “On the relationship between the characteristics of bilirubin oxidases and O2 cathodes based on their "wiring",” Journal of Physical Chemistry B, vol. 106, no. 34, pp. 8842–8848, 2002. View at Publisher · View at Google Scholar
  39. S. C. Barton, H. H. Kim, G. Binyamin, Y. Zhang, and A. Heller, “Electroreduction of O2 to water on the “wired” laccase cathode,” Journal of Physical Chemistry B, vol. 105, no. 47, pp. 11917–11921, 2001. View at Publisher · View at Google Scholar
  40. S. C. Barton, H. H. Kim, G. Binyamin, Y. Zhang, and A. Heller, “The “wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5,” Journal of the American Chemical Society, vol. 123, no. 24, pp. 5802–5803, 2001. View at Publisher · View at Google Scholar
  41. S. Tsujimura, K. Kano, and T. Ikeda, “Glucose/O2 biofuel cell operating at physiological conditions,” Electrochemistry, vol. 70, no. 12, pp. 940–942, 2002.
  42. F. Gao, Y. Yan, L. Su, L. Wang, and L. Mao, “An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum,” Electrochemistry Communications, vol. 9, no. 5, pp. 989–996, 2007. View at Publisher · View at Google Scholar
  43. M. C. Weigel, E. Tritscher, and F. Lisdat, “Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes,” Electrochemistry Communications, vol. 9, no. 4, pp. 689–693, 2007. View at Publisher · View at Google Scholar
  44. W. Zheng, Q. Li, L. Su, Y. Yan, J. Zhang, and L. Mao, “Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives,” Electroanalysis, vol. 18, no. 6, pp. 587–594, 2006. View at Publisher · View at Google Scholar
  45. R. Kontani, S. Tsujimura, and K. Kano, “Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes,” Bioelectrochemistry, vol. 76, no. 1-2, pp. 10–13, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. S. Tsujimura, Y. Miura, and K. Kano, “CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water,” Electrochimica Acta, vol. 53, no. 18, pp. 5716–5720, 2008. View at Publisher · View at Google Scholar
  47. A. Habrioux, T. Napporn, K. Servat, S. Tingry, and K. B. Kokoh, “Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell,” Electrochimica Acta, vol. 55, no. 26, pp. 7701–7705, 2010. View at Publisher · View at Google Scholar
  48. G. Gupta, C. Lau, V. Rajendran et al., “Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes,” Electrochemistry Communications, vol. 13, no. 3, pp. 247–249, 2011. View at Publisher · View at Google Scholar
  49. S. Shleev, G. Shumakovich, O. Morozova, and A. Yaropolov, “Stable “floating” air diffusion biocathode basedon direct electron transfer reactions between carbon particles and high redox potential laccase,” Fuel Cells, vol. 10, no. 4, pp. 726–733, 2010. View at Publisher · View at Google Scholar
  50. K. Szot, W. Nogala, J. Niedziolka-Jönsson et al., “Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction. SECM activity mapping and application in zinc-dioxygen battery,” Electrochimica Acta, vol. 54, no. 20, pp. 4620–4625, 2009. View at Publisher · View at Google Scholar
  51. J. Niedziolka-Jonsson, M. Jonsson-Niedziolka, W. Nogala, and B. Palys, “Electrosynthesis of thin sol-gel films at a three-phase junction,” Electrochimica Acta, vol. 56, no. 9, pp. 3311–3316, 2011. View at Publisher · View at Google Scholar
  52. K. Szot, R. P. Lynch, A. Lesniewski et al., “The effect of linker of electrodes prepared from sol-gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis,” Electrochimica Acta. In press. View at Publisher · View at Google Scholar
  53. A. Lesniewski, M. Paszewski, and M. Opallo, “Gold-carbon three dimensional film electrode prepared from oppositely charged conductive nanoparticles by layer-by-layer approach,” Electrochemistry Communications, vol. 12, no. 3, pp. 435–437, 2010. View at Publisher · View at Google Scholar
  54. K. Szot, J. Niedziolka, J. Rogalski, F. Marken, and M. Opallo, “Bioelectrocatalytic dioxygen reduction at hybrid silicate-polyallylamine film with encapsulated laccase,” Journal of Electroanalytical Chemistry, vol. 612, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar
  55. M. Zhou, L. Deng, D. Wen, L. Shang, L. Jin, and S. Dong, “Highly ordered mesoporous carbons-based glucose/O2 biofuel cell,” Biosensors & Bioelectronics, vol. 24, no. 9, pp. 2904–2908, 2009. View at Publisher · View at Google Scholar · View at PubMed
  56. V. Flexer, N. Brun, O. Courjean, R. Backov, and N. Mano, “Porous mediator-free enzyme carbonaceous electrodes obtained through integrative chemistry for biofuel cells,” Energy & Environmental Science, vol. 4, no. 6, pp. 2097–2106, 2011. View at Publisher · View at Google Scholar
  57. P. F. Harris, Carbon Nanotube Science, Cambridge Publishers, 2009.
  58. C. Ménard-Moyon, K. Kostarelos, M. Prato, and A. Bianco, “Functionalized carbon nanotubes for probing and modulating molecular functions,” Chemistry and Biology, vol. 17, no. 2, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. M. H. Osman, A. A. Shah, and F. C. Walsh, “Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells,” Biosensors & Bioelectronics, vol. 26, no. 7, pp. 3087–3102, 2011. View at Publisher · View at Google Scholar · View at PubMed
  60. W. Yang, K. R. Ratinac, S. R. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, “Carbon nanomaterials in biosensors: should you use nanotubes or graphene,” Angewandte Chemie International Edition, vol. 49, no. 12, pp. 2114–2138, 2010. View at Publisher · View at Google Scholar · View at PubMed
  61. P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso, and P. M. Ajayan, “Improved charge transfer at carbon nanotube electrodes,” Advanced Materials, vol. 11, no. 2, pp. 154–157, 1999.
  62. A. Hirsch, “Functionalization of single-walled carbon nanotubes,” Angewandte Chemie International Edition, vol. 41, no. 11, pp. 1853–1859, 2002. View at Publisher · View at Google Scholar
  63. C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, “Dispersion of functionalized carbon nanotubes in polystyrene,” Macromolecules, vol. 35, no. 23, pp. 8825–8830, 2002. View at Publisher · View at Google Scholar
  64. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, “Covalent surface chemistry of single-walled carbon nanotubes,” Advanced Materials, vol. 17, no. 1, pp. 17–29, 2005. View at Publisher · View at Google Scholar
  65. K. Karnicka, K. Miecznikowski, B. Kowalewska et al., “ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen,” Analytical Chemistry, vol. 80, no. 19, pp. 7643–7648, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, and H. Dai, “Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition,” Nano Letters, vol. 2, no. 4, pp. 285–288, 2002. View at Publisher · View at Google Scholar
  67. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis et al., “Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 4984–4989, 2003. View at Publisher · View at Google Scholar · View at PubMed
  68. M. Jönsson, K. Szot, J. Niedziolka et al., “Adsorption of 2,2-azino-bis(3-ethylbenzothiazoline6-sulfonate) on multiwalled carbon nanotubessilicate film: application to bioelectrocatalytic dioxygen reduction,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 4, pp. 2346–2352, 2009. View at Publisher · View at Google Scholar
  69. M. Jönsson-Niedziolka, K. Szot, J. Rogalski, and M. Opallo, “Pyrene sulfonate functionalised single-walled carbon nanotubes for mediatorless dioxygen bioelectrocatalysis,” Electrochemistry Communications, vol. 11, no. 5, pp. 1042–1044, 2009. View at Publisher · View at Google Scholar
  70. C. Liu, Z. Chen, and C.-Z. Li, “Surface engineering of graphene-enzyme nanocomposites for miniaturized biofuel cell,” IEEE Transactions on Nanotechnology, vol. 10, no. 1, pp. 59–62, 2011. View at Publisher · View at Google Scholar
  71. E. Nazaruk, S. Smoliński, M. Swatko-Ossor et al., “Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases,” Journal of Power Sources, vol. 183, no. 2, pp. 533–538, 2008. View at Publisher · View at Google Scholar
  72. K. Sadowska, E. Jabłonowska, K. Stolarczyk et al., “Chemically modified carbon nanotubes: synthesis and implementation,” Polish Journal of Chemistry, vol. 82, no. 6, pp. 1309–1313, 2008.
  73. H. Y. Zhao, H. M. Zhou, J. X. Zhang, W. Zheng, and Y. F. Zheng, “Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell,” Biosensors & Bioelectronics, vol. 25, no. 2, pp. 463–468, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. Y. Liu, M. Wang, F. Zhao, B. Liu, and S. Dong, “A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix,” Chemistry: A European Journal, vol. 11, no. 17, pp. 4970–4974, 2005. View at Publisher · View at Google Scholar · View at PubMed
  75. Y. Liu, L. Huang, and S. Dong, “Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode,” Biosensors & Bioelectronics, vol. 23, no. 1, pp. 35–41, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. J. Lim, P. Malati, F. Bonet, and B. Dunn, “Nanostructured sol-gel electrodes for biofuel cells,” Journal of the Electrochemical Society, vol. 154, no. 2, pp. A140–A145, 2007. View at Publisher · View at Google Scholar
  77. Y. Liu and S. Dong, “A biofuel cell with enhanced power output by grape juice,” Electrochemistry Communications, vol. 9, no. 7, pp. 1423–1427, 2007. View at Publisher · View at Google Scholar
  78. R. Bilewicz, K. Stolarczyk, K. Sadowska, J. Rogalski, and J. F. Biernat, “Carbon nanotubes derivatized with mediators for laccase catalyzed oxygen reduction,” ECS Transactions, vol. 19, no. 6, pp. 27–36, 2009. View at Publisher · View at Google Scholar
  79. E. Nazaruk, K. Sadowska, J. F. Biernat, J. Rogalski, G. Ginalska, and R. Bilewicz, “Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications,” Analytical and Bioanalytical Chemistry, vol. 398, no. 4, pp. 1651–1660, 2010. View at Publisher · View at Google Scholar · View at PubMed
  80. K. Sadowska, K. Stolarczyk, J. F. Biernat, K. P. Roberts, J. Rogalski, and R. Bilewicz, “Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes,” Bioelectrochemistry, vol. 80, no. 1, pp. 73–80, 2010. View at Publisher · View at Google Scholar · View at PubMed
  81. C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, and R. G. Compton, “Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes,” Angewandte Chemie International Edition, vol. 45, no. 16, pp. 2533–2537, 2006. View at Publisher · View at Google Scholar · View at PubMed
  82. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, “Raman spectroscopy of carbon nanotubes in 1997 and 2007,” Journal of Physical Chemistry C, vol. 111, no. 48, pp. 17887–17893, 2007. View at Publisher · View at Google Scholar
  83. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics Reports, vol. 409, no. 2, pp. 47–99, 2005. View at Publisher · View at Google Scholar
  84. Y. Zhang, S. Yuan, W. Zhou, J. Xu, and Y. Li, “Spectroscopic evidence and molecular simulation investigation of the π-π interaction between pyrene molecules and carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 7, pp. 2366–2375, 2007. View at Publisher · View at Google Scholar
  85. J. Liu, A. Chou, W. Rahmat, M. N. Paddon-Row, and J. J. Gooding, “Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays,” Electroanalysis, vol. 17, no. 1, pp. 38–46, 2005. View at Publisher · View at Google Scholar
  86. L. Hussein, G. Urban, and M. Krüger, “Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications,” Physical Chemistry Chemical Physics, vol. 13, no. 13, pp. 5831–5839, 2011. View at Publisher · View at Google Scholar · View at PubMed
  87. M. Smolander, H. Boer, M. Valkiainen et al., “Development of a printable laccase-based biocathode for fuel cell applications,” Enzyme and Microbial Technology, vol. 43, no. 2, pp. 93–102, 2008. View at Publisher · View at Google Scholar
  88. S. N. Ding, M. Holzinger, C. Mousty, and S. Cosnier, “Laccase electrodes based on the combination of single-walled carbon nanotubes and redox layered double hydroxides: towards the development of biocathode for biofuel cells,” Journal of Power Sources, vol. 195, no. 15, pp. 4714–4717, 2010. View at Publisher · View at Google Scholar
  89. J. Lim, N. Cirigliano, J. Wang, and B. Dunn, “Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase,” Physical Chemistry Chemical Physics, vol. 9, no. 15, pp. 1809–1814, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. K. Stolarczyk, E. Nazaruk, J. Rogalski, and R. Bilewicz, “Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators,” Electrochimica Acta, vol. 53, no. 11, pp. 3983–3990, 2008. View at Publisher · View at Google Scholar
  91. Y. Yan, W. Zheng, L. Su, and L. Mao, “Carbon-nanotube-based glucose/O2 biofuel cells,” Advanced Materials, vol. 18, no. 19, pp. 2639–2643, 2006. View at Publisher · View at Google Scholar
  92. X. Li, H. Zhou, P. Yu, L. Su, T. Ohsaka, and L. Mao, “A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate,” Electrochemistry Communications, vol. 10, no. 6, pp. 851–854, 2008. View at Publisher · View at Google Scholar
  93. F. Gao, L. Viry, M. Maugey, P. Poulin, and N. Mano, “Engineering hybrid nanotube wires for high-power biofuel cells,” Nature Communications, vol. 1, no. 1, article 2, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. L. Deng, C. Chen, M. Zhou, S. Guo, E. Wang, and S. Dong, “Integrated self-powered microchip biosensor for endogenous biological cyanide,” Analytical Chemistry, vol. 82, no. 10, pp. 4283–4287, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. M. Tominaga, M. Ohtani, and I. Taniguchi, “Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase,” Physical Chemistry Chemical Physics, vol. 10, no. 46, pp. 6928–6934, 2008. View at Publisher · View at Google Scholar · View at PubMed
  96. J. Y. Lee, H. Y. Shin, S. W. Kang, C. Park, and S. W. Kim, “Application of an enzyme-based biofuel cell containing a bioelectrode modified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum,” Enzyme and Microbial Technology, vol. 48, no. 1, pp. 80–84, 2011. View at Publisher · View at Google Scholar
  97. J. Y. Lee, H. Y. Shin, S. W. Kang, C. Park, and S. W. Kim, “Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell,” Journal of Power Sources, vol. 195, no. 3, pp. 750–755, 2010. View at Publisher · View at Google Scholar
  98. J. Kim, H. Jia, and P. Wang, “Challenges in biocatalysis for enzyme-based biofuel cells,” Biotechnology Advances, vol. 24, no. 3, pp. 296–308, 2006. View at Publisher · View at Google Scholar · View at PubMed
  99. R. P. Ramasamy, H. R. Luckarift, D. M. Ivnitski, P. B. Atanassov, and G. R. Johnson, “High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates,” Chemical Communications, vol. 46, no. 33, pp. 6045–6047, 2010. View at Publisher · View at Google Scholar · View at PubMed
  100. C. Tanne, G. Göbel, and F. Lisdat, “Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell,” Biosensors & Bioelectronics, vol. 26, no. 2, pp. 530–535, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. G. Göbel, T. Dietz, and F. Lisdat, “Bienzyme sensor based on an oxygen reducing bilirubin oxidase electrode,” Electroanalysis, vol. 22, no. 14, pp. 1581–1585, 2010. View at Publisher · View at Google Scholar
  102. C. Liu, S. Alwarappan, Z. Chen, X. Kong, and C. Z. Li, “Membraneless enzymatic biofuel cells based on graphene nanosheets,” Biosensors & bioelectronics, vol. 25, no. 7, pp. 1829–1833, 2010.
  103. X. Wu, Y. Hu, J. Jin et al., “Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),” Analytical Chemistry, vol. 82, no. 9, pp. 3588–3596, 2010. View at Publisher · View at Google Scholar · View at PubMed
  104. W. Zheng, H. Y. Zhao, J. X. Zhang et al., “A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes,” Electrochemistry Communications, vol. 12, no. 7, pp. 869–871, 2010. View at Publisher · View at Google Scholar
  105. S. Shleev, J. Tkac, A. Christenson et al., “Direct electron transfer between copper-containing proteins and electrodes,” Biosensors & Bioelectronics, vol. 20, no. 12, pp. 2517–2554, 2005. View at Publisher · View at Google Scholar · View at PubMed
  106. K. Murata, K. Kajiya, N. Nakamura, and H. Ohno, “Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell,” Energy & Environmental Science, vol. 2, no. 12, pp. 1280–1285, 2009. View at Publisher · View at Google Scholar
  107. L. Deng, L. Shang, D. Wen, J. Zhai, and S. Dong, “A membraneless biofuel cell powered by ethanol and alcoholic beverage,” Biosensors & Bioelectronics, vol. 26, no. 1, pp. 70–73, 2010. View at Publisher · View at Google Scholar · View at PubMed
  108. R. Tel-Vered and I. Willner, “Bis-aniline-crosslinked enzyme-metal nanoparticle composites on electrodes for bioelectronic applications,” Israel Journal of Chemistry, vol. 50, no. 3, pp. 321–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Nakamura, K. Kamiya, and K. Hashimoto, “Direct electron-transfer conduits constructed at the interface between multicopper oxidase and nanocrystalline semiconductive Fe oxides,” Chemical Physics Letters, vol. 498, no. 4-6, pp. 307–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. E. Rozniecka, M. Jonsson-Niedziolka, J. W. Sobczak, and M. Opallo, “Mediatorless bioelectrocatalysis of dioxygen reduction at ITO and ITO nanoparticulate film electrodes,” Electrochimica Acta, vol. 56, no. 24, pp. 8739–8745, 2011.
  111. W. Nogala, A. Celebanska, G. Wittstock, and M. Opallo, “Bioelectrocatalytic carbon ceramic gas electrode for reduction of dioxygen and its application in a zinc-dioxygen cell,” Fuel Cells, vol. 10, no. 6, pp. 1157–1163, 2010. View at Publisher · View at Google Scholar · View at Scopus