About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2012 (2012), Article ID 572148, 20 pages
http://dx.doi.org/10.1155/2012/572148
Research Article

Ab Initio Potential Energy Surfaces for Both the Ground ( ) and Excited ( ) Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

1Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
2Institute of High Performance Computing and Applications, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Received 27 May 2011; Accepted 14 July 2011

Academic Editor: Xinchuan Huang

Copyright © 2012 Anyang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Jasinski, B. S. Meyerson, and B. A. Scott, “Mechanistic studies of chemical vapor-deposition,” Annual Review of Physical Chemistry, vol. 38, no. 1, pp. 109–140, 1987.
  2. S. K. Murad, S. P. Beaumont, and C. D. W. Wilkinson, “New chemistry for selective reactive ion etching of InGaAs and InP over InAlAs in SiCl4/SiF4/HBr plasmas,” Applied Physics Letters, vol. 67, no. 18, pp. 2660–2662, 1995. View at Scopus
  3. G. Herzberg and R. D. Verma, “Spectra & structures of free HSiCl & HSiBr radicals,” Canadian Journal of Physics, vol. 42, no. 3, pp. 395–432, 1964.
  4. J. T. Hougen and J. K. G. Watson, “Anomalous rotational line intensities in electronic transitions of polyatomic molecules-axis-switching,” Canadian Journal of Physics, vol. 43, no. 2, pp. 298–320, 1965.
  5. N. L. Shinkle and J. B. Coon, “A variable reduced mass model for quasi-linear molecules with application to HSiBr,” Journal of Molecular Spectroscopy, vol. 40, no. 2, pp. 217–227, 1971. View at Scopus
  6. W. A. Gilchrist, E. Reyna, and J. B. Coon, “Geometrical structures, bending potentials, and vibrational frequencies v1for 1A'' states of HSiBr, HSiCl, and DSiCl,” Journal of Molecular Spectroscopy, vol. 74, no. 3, pp. 345–360, 1979. View at Scopus
  7. J. I. Steinfeld, “Reactions of photogenerated free radicals at surfaces of electronic materials,” Chemical Reviews, vol. 89, no. 6, pp. 1291–1301, 1989. View at Scopus
  8. H. Harjanto, W. W. Harper, and D. J. Clouthier, “Resolution of anomalies in the geometry and vibrational frequencies of monobromosilylene (HSiBr) by pulsed discharge jet spectroscopy,” The Journal of Chemical Physics, vol. 105, no. 23, pp. 10189–10200, 1996. View at Scopus
  9. W. W. Harper and D. J. Clouthier, “Reinvestigation of the HSiCl electronic spectrum: experimental reevaluation of the geometry, rotational constants, and vibrational frequencies,” The Journal of Chemical Physics, vol. 106, no. 23, pp. 9461–9473, 1997. View at Scopus
  10. W. W. Harper, E. A. Ferrall, R. K. Hilliard, S. M. Stogner, R. S. Grev, and D. J. Clouthier, “Laser spectroscopic detection of the simplest unsaturated silylene and germylene,” Journal of the American Chemical Society, vol. 119, no. 35, pp. 8361–8362, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. W. W. Harper, D. A. Hostutler, and D. J. Clouthier, “Pulsed discharge jet spectroscopy of DSiF and the equilibrium molecular structure of monofluorosilylene,” The Journal of Chemical Physics, vol. 106, no. 11, pp. 4367–4375, 1997. View at Scopus
  12. D. A. Hostutler, D. J. Clouthier, and R. H. Judge, “Single vibronic level emission spectroscopy of jet-cooled HSiF and DSiF,” The Journal of Chemical Physics, vol. 114, no. 24, pp. 10728–10732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Hostutler, N. Ndiege, D. J. Clouthier, and S. W. Pauls, “Emission spectroscopy, harmonic vibrational frequencies, and improved ground state structures of jet-cooled monochloro—and monobromosilylene (HSiCl and HSiBr),” The Journal of Chemical Physics, vol. 115, no. 12, pp. 5485–5491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. B. S. Tackett and D. J. Clouthier, “Structural and spectroscopic trends in the ground states of the monohalosilylenes: emission spectroscopy of jet-cooled HSiI and DSiI,” The Journal of Chemical Physics, vol. 118, no. 6, pp. 2612–2619, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. K. W. Mok, E. P. F. Lee, F. T. Chau, and J. M. Dyke, “Franck-Condon simulation of the single vibronic level emission spectra of HSiF and DSiF including anharmonicity,” The Journal of Chemical Physics, vol. 120, no. 3, pp. 1292–1305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. B. S. Tackett, D. J. Clouthier, J. N. Landry, and W. Jager, “Fourier transform microwave spectroscopy of HSiBr: exploring the Si-Br bond through quadrupole hyperfine coupling,” The Journal of Chemical Physics, vol. 122, no. 21, Article ID 214314, 6 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. K. Mok, E. P. F. Lee, F. T. Chau, and J. M. Dyke, “Franck-Condon simulations including anharmonicity of the A1A''-X1A' absorption and single vibronic level emission spectra of HSiCl and DSiCl,” Journal of Chemical Theory and Computation, vol. 5, no. 3, pp. 565–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lin, D. Xie, and H. Guo, “Ab initio potential energy surfaces for both the ground (X1A)and excited (X1A') and excited (A1A'') electronic states of HGeCl and the absorption and emission spectra of HGeCl/DGeCl,” The Journal of Chemical Physics, vol. 129, no. 15, Article ID 154313, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lin, D. Xie, and H. Guo, “Ab initio potential energy surfaces for both the ground (X1A') and excited (A1A'') electronic states of HGeBr and the absorption and emission spectra of HGeBr/DGeBr,” Journal of Physical Chemistry A, vol. 113, no. 26, pp. 7314–7321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Lin and D. Q. Xie, “New ab initio potential energy surfaces for both the ground (X1A) and excited (A1A) electronic states of HSiCl and the absorption and emission spectra of of HSiCl/DSiCl,” Journal of Computational Chemistry, vol. 32, no. 8, pp. 1694–1702, 2011.
  21. MOLPRO, a package of ab initio programs designed by H.-J. Werner, P. J. Knowles, R. D. Amos et al., version 2006.1.
  22. C. Hampel, K. A. Peterson, and H. J. Werner, “A comparison of the efficiency and accuracy of the quadratic configuration-interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods,” Chemical Physics Letters, vol. 190, no. 1-2, pp. 1–12, 1992. View at Scopus
  23. T. H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, no. 2, pp. 1007–1023, 1989. View at Scopus
  24. S. R. Langhoff and E. R. Davidson, “Configuration interaction calculations on nitrogen molecule,” International Journal of Quantum Chemistry, vol. 8, no. 1, pp. 61–72, 1974.
  25. P. J. Knowles and H.-J. Werner, “An efficient method for the evaluation of coupling coefficients in configuration interaction calculations,” Chemical Physics Letters, vol. 145, no. 6, pp. 514–522, 1988. View at Scopus
  26. H.-J. Werner and P. J. Knowles, “An efficient internally contracted multiconfiguration-reference configuration interaction method,” The Journal of Chemical Physics, vol. 89, no. 9, pp. 5803–5814, 1988. View at Scopus
  27. P. J. Knowles and H.-J. Werner, “An efficient second-order MCSCF method for long configuration expansions,” Chemical Physics Letters, vol. 115, no. 3, pp. 259–267, 1985. View at Scopus
  28. H.-J. Werner and P. J. Knowles, “A second order multiconfiguration SCF procedure with optimum convergence,” The Journal of Chemical Physics, vol. 82, no. 11, pp. 5053–5063, 1985. View at Scopus
  29. B. R. Johnson and W. P. Reinhardt, “Adiabatic separations of stretching and bending vibrations: application to H2O,” The Journal of Chemical Physics, vol. 85, no. 8, pp. 4538–4556, 1986. View at Scopus
  30. J. C. Light, I. P. Hamilton, and J. V. Lill, “Generalized discrete variable approximation in quantum mechanics,” The Journal of Chemical Physics, vol. 82, no. 3, pp. 1400–1409, 1985. View at Scopus
  31. C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” Journal of Research of the National Bureau of Standards, vol. 45, no. 4, pp. 255–282, 1950.
  32. J. Echave and D. C. Clary, “Potential optimized discrete variable representation,” Chemical Physics Letters, vol. 190, no. 3-4, pp. 225–230, 1992. View at Scopus
  33. H. Wei and T. Carrington, “The discrete variable representation of a triatomic Hamiltonian in bond length-bond angle coordinates,” The Journal of Chemical Physics, vol. 97, no. 5, pp. 3029–3037, 1992. View at Scopus
  34. J. V. Lill, G. A. Parker, and J. C. Light, “Discrete variable representations and sudden models in quantum scattering theory,” Chemical Physics Letters, vol. 89, no. 6, pp. 483–489, 1982. View at Scopus
  35. R. Q. Chen and H. Guo, “A single Lanczos propagation method for calculating transition amplitudes,” The Journal of Chemical Physics, vol. 111, no. 22, pp. 9944–9951, 1999. View at Scopus
  36. R. Q. Chen and H. Guo, “A single Lanczos propagation method for calculating transition amplitudes. II. Modified QL and symmetry adaptation,” The Journal of Chemical Physics, vol. 114, no. 4, pp. 1467–1472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Guo, R. Chen, and D. Xie, “Calculation of transition amplitudes with a single Lanczos propagation,” Journal of Theoretical and Computational Chemistry, vol. 1, no. 1, pp. 173–185, 2002.