About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2012 (2012), Article ID 598243, 4 pages
http://dx.doi.org/10.1155/2012/598243
Research Article

Effect of Hetero Atom on the Hammett’s Reaction Constant ( 𝝆 ) from the Physical Basis of Dissociation Equilibriums of (Dithio) Benzoic Acids and (Thio) Phenols and Its Application to Solvolysis Reactions and Some Free Radical Reactions

1Department of Chemistry, Osmania University, Hyderabad 500 007, India
2Department of Chemistry, Mizan-Tepi University, Tepi Campus, Tepi, Ethiopia

Received 3 April 2012; Accepted 11 May 2012

Academic Editor: Leonardo Palmisano

Copyright © 2012 Jagannadham Vandanapu and Sanjeev Rachuru. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. P. Hammett, “Some relations between reaction rates and equilibrium constants,” Chemical Reviews, vol. 17, no. 1, pp. 125–136, 1935. View at Scopus
  2. L. P. Hammett, “The effect of structure upon the reactions of organic compounds. Benzene derivatives,” Journal of the American Chemical Society, vol. 59, no. 1, pp. 96–103, 1937. View at Scopus
  3. J. P. Richard, T. L. Amyes, V. Jagannadham, Y. G. Lee, and D. J. Rice, “Spontaneous cleavage of gem-diazides: a comparison of the effects of α-azido and other electron-donating groups on the kinetic and thermodynamic stability of benzyl and alkyl carbocations in aqueous solution,” Journal of the American Chemical Society, vol. 117, no. 19, pp. 5198–5205, 1995. View at Scopus
  4. R. Sanjeev and V. Jagannadham, “Substituent effects on the spontaneous cleavage of benzyl-gem-dichlorides in aqueous solution,” Indian Journal of Chemistry, vol. 41, no. 10, pp. 2145–2149, 2002. View at Scopus
  5. R. Sanjeev and V. Jagannadham, “Substituent effects on the spontaneous cleavage of benzyl-gem-dibromides in aqueous solution,” Indian Journal of Chemistry, vol. 41, no. 9, pp. 1841–1844, 2002. View at Scopus
  6. V. Jagannadham, T. L. Amyes, and J. P. Richard, “Kinetic and thermodynamic stabilities of α-oxygen-and α-sulfur-stabilized carbocations in solution,” Journal of the American Chemical Society, vol. 115, no. 18, pp. 8465–8466, 1993. View at Scopus
  7. T. L. Amyes, J. P. Richard, and V. Jagannadham, “Formation and stability of reactive intermediates of organic reactions in aqueous solution,” Royal Society of Chemistry, vol. 148, pp. 334–350, 1995.
  8. R. Sanjeev and V. Jagannadham, “Effect of α-halogen atom and α-azido group on thermodynamic stability and kinetic reactivity of benzyl carbocations in aqueous solution,” Indian Journal of Chemistry, vol. 41, no. 10, pp. 2150–2152, 2002. View at Scopus
  9. J. F. J. Dippy and F. R. Williams, “Chemical constitution and the dissociation constants of monocarboxylic acids. Part II,” Journal of the Chemical Society, pp. 1888–1892, 1934. View at Scopus
  10. J. F. J. Dippy, H. B. Watson, and F. R. Williams, “Chemical constitution and the dissociation constants of monocarboxylic acids. Part IV. A discussion of the electrolytic dissociation of substituted benzoic and phenylacetic acids in relation to other side-chain processes,” Journal of the Chemical Society, pp. 346–350, 1935. View at Scopus
  11. J. F. J. Dippy and R. H. Lewis, “Chemical constitution and the dissociation constants of monocarboxylic acids. Part V. Further substituted benzoic and phenylacetic acids,” Journal of the Chemical Society, pp. 644–649, 1936. View at Scopus
  12. The pKa values of dithio benzoic acids are from a search using SciFinder Scholar software by using the formula index of each acid, Similarly for the thio phenol and 4-nitro thio phenol.
  13. H. H. Jaffé, “A reëxamination of the Hammett equation,” Chemical Reviews, vol. 53, no. 2, pp. 191–261, 1953. View at Scopus
  14. V. Jagannadham and S. Steenken, “One-electron reduction of nitrobenzenes by α-hydroxyalkyl radicals via addition/elimination. An example of an organic inner-sphere electron-transfer reaction,” Journal of the American Chemical Society, vol. 106, no. 22, pp. 6542–6551, 1984. View at Scopus
  15. D. Meisel and P. Neta, “One-electron redox potentials of nitro compounds and radiosensitizers. Correlation with spin densities of their radical anions,” Journal of the American Chemical Society, vol. 97, p. 5198, 1975.
  16. P. Neta, M. G. Simic, and M. Z. Hoffman, “Pulse radiolysis and electron spin resonance studies of nitro aromatic radical anions. Optical absorption spectra, kinetics, and one-electron redox potentials,” The Journal of Physical Chemistry, vol. 80, p. 2018, 1976.