About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2012 (2012), Article ID 970369, 6 pages
http://dx.doi.org/10.1155/2012/970369
Research Article

Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose

Department of Physics, University of Messina, Street D’Alcontres 31, 98166 Messina, Italy

Received 8 April 2012; Revised 1 July 2012; Accepted 23 July 2012

Academic Editor: Sergei Tretiak

Copyright © 2012 Emanuele Calabrò and Salvatore Magazù. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Ellis and F. U. Hartl, “Principles of protein folding in the cellular environment,” Current Opinion in Structural Biology, vol. 9, no. 1, pp. 102–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Gething and J. Sambrook, “Protein folding in the cell,” Nature, vol. 355, no. 6355, pp. 33–45, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. WHO, “Extremely low frequency (ELF) fields,” Environmental Health Criteria 35, World Health Organization, Geneva, Switzerland, 1984.
  4. WHO, “Electromagnetic fields (300 Hz to 300 GHz),” Environmental Health Criteria 137, World Health Organization, Geneva, Switzerland, 1993.
  5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “Non-ionizing radiation, Part 1: static and extremely low-frequency (ELF) electric and magnetic fields,” Monographs on the Evaluation of Carcinogenic Risks to Humans 80, IARC, Lyon, France, 2002.
  6. S. Magazù, E. Calabrò, and S. Campo, “FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure,” Journal of Physical Chemistry B, vol. 114, no. 37, pp. 12144–12149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Byler and H. Susi, “Examination of the secondary structure of proteins by deconvolved FTIR spectra,” Biopolymers, vol. 25, no. 3, pp. 469–487, 1986. View at Scopus
  8. W. K. Surewicz and H. H. Mantsch, “New insight into protein secondary structure from resolution-enhanced infrared spectra,” Biochimica et Biophysica Acta, vol. 952, no. 2, pp. 115–130, 1988. View at Scopus
  9. K. Fritze, C. Sommer, B. Schmitz et al., “Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat,” Acta Neuropathologica, vol. 94, no. 5, pp. 465–470, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Tore, P. E. Dulou, E. Haro, B. Veyret, and P. Aubineau, “Two-hour exposure to 2 W/kg, 900 MHz GSM microwaves induces plasma protein extravasation in rat brain,” in Proceedings of the 5th International Congress of the European Bioelectromagnetics Association, pp. 43–45, Helsinki, Finland, September 2001.
  11. L. G. Salford, A. E. Brun, J. L. Eberhardt, L. Malmgren, and B. R. R. Persson, “Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones,” Environmental Health Perspectives, vol. 111, no. 7, pp. 881–883, 2003. View at Scopus
  12. E. Calabrò, S. Condello, M. Currò et al., “Modulation of HSP response in SH-SY5Y cells following exposure to microwaves of a mobile phone,” World Journal of Biological Chemistry, vol. 3, no. 2, pp. 34–40, 2012.
  13. E. Calabrò and S. Magazù, “Inspections of mobile phone microwaves effects on proteins secondary structure by means of fourier transform infrared spectroscopy,” Journal of Electromagnetic Analysis and Applications, vol. 2, pp. 607–617, 2010.
  14. A. Hédoux, R. Ionov, J. F. Willart et al., “Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scattering and differential scanning calorimetry investigation,” Journal of Chemical Physics, vol. 124, no. 1, Article ID 014703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hédoux, J. F. Willart, L. Paccou et al., “Thermostabilization mechanism of bovine serum albumin by trehalose,” Journal of Physical Chemistry B, vol. 113, no. 17, pp. 6119–6126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Hédoux, J. F. Willart, R. Ionov et al., “Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations,” Journal of Physical Chemistry B, vol. 110, no. 45, pp. 22886–22893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Crowe, J. F. Carpenter, and L. M. Crowe, “The role of vitrification in anhydrobiosis,” Annual Review of Physiology, vol. 60, pp. 73–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Affouard, P. Bordat, M. Descamps et al., “A combined neutron scattering and simulation study on bioprotectant systems,” Chemical Physics, vol. 317, no. 2-3, pp. 258–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Magazù, F. Migliardo, and M. T. F. Telling, “α,α-Trehalose-water solutions. VIII. Study of the diffusive dynamics of water by high-resolution quasi elastic neutron scattering,” Journal of Physical Chemistry B, vol. 110, no. 2, pp. 1020–1025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Magazù, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study,” Journal of Chemical Physics, vol. 111, no. 19, pp. 9086–9092, 1999. View at Scopus
  21. S. Magazù, F. Migliardo, and M. T. F. Telling, “α,α-Trehalose-water solutions. VIII. Study of the diffusive dynamics of water by high-resolution quasi elastic neutron scattering,” Journal of Physical Chemistry B, vol. 110, no. 2, pp. 1020–1025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Magazù, F. Migliardo, C. Mondelli, and M. Vadalà, “Correlation between bioprotective effectiveness and dynamic properties of trehalose-water, maltose-water and sucrose-water mixtures,” Carbohydrate Research, vol. 340, no. 18, pp. 2796–2801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Branca, S. Magazù, G. Maisano, and F. Migliardo, “Vibrational and relaxational contributions in disaccharide/H2O glass formers,” Physical Review B, vol. 64, no. 22, Article ID 224204, 2001. View at Scopus
  24. A. Dong, P. Huang, and W. S. Caughey, “Protein secondary structures in water from second-derivative amide i infrared spectra,” Biochemistry, vol. 29, no. 13, pp. 3303–3308, 1990. View at Scopus
  25. G. Anderle and R. Mendelsohn, “Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region,” Biophysical Journal, vol. 52, no. 1, pp. 69–74, 1987. View at Scopus
  26. S. Cai and B. R. Singh, “Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins,” Biophysical Chemistry, vol. 80, no. 1, pp. 7–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Stuart, Biological Applications of Infrared Spectroscopy, vol. 115 of Analytical Chemistry of Open Learning, John Wiley and Sons, Chichester, UK, 1997.
  28. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vibrational Spectroscopy, vol. 32, no. 1, pp. 3–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Calabrò, S. Condello, S. Magazù, and R. Ientile, “Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in mid-infrared region,” Journal of Electromagnetic Analysis and Applications, vol. 3, pp. 69–78, 2011.
  30. H. Susi and D. M. Byler, “Resolution-enhanced fourier transform infrared spectroscopy of enzymes,” Methods in Enzymology, vol. 130, pp. 290–311, 1986. View at Publisher · View at Google Scholar · View at Scopus
  31. A. A. Ismail, H. H. Mantsch, and P. T. T. Wong, “Aggregation of chymotrypsinogen: portrait by infrared spectroscopy,” Biochimica et Biophysica Acta, vol. 1121, no. 1-2, pp. 183–188, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Lefèvre and M. Subirade, “Molecular differences in the formation and structure of fine-stranded and particulate β-lactoglobulin gels,” Biopolymers, vol. 54, no. 7, pp. 578–586, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Huang, A. Dong, and W. S. Caughey, “Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy,” Journal of Pharmaceutical Sciences, vol. 84, no. 4, pp. 387–392, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Bauer, R. Carrotta, C. Rischel, and L. Øgendal, “Characterization and isolation of intermediates in β-lactoglobulin heat aggregation at high pH,” Biophysical Journal, vol. 79, no. 2, pp. 1030–1038, 2000. View at Scopus
  35. S. Magazù, E. Calabrò, and S. Campo, “Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by ftir spectroscopy,” Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6818–6826, 2011. View at Publisher · View at Google Scholar
  36. H. Fröhlich, “Long-range coherence and energy storage in biological systems,” International Journal of Quantum Chemistry, vol. 2, pp. 641–649, 1968.
  37. J. Pokorny and T. M. Wu, Biophysical Aspects of Coherence and Biological Order, Springer, Prague, Czech Republic, 1998.
  38. G. J. Hyland, “Non-thermal bioeffects induced by low-intensity microwave irradiation of living systems,” Engineering Science and Education Journal, vol. 7, no. 6, pp. 261–269, 1998. View at Scopus