About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 159712, 9 pages
http://dx.doi.org/10.1155/2013/159712
Research Article

Comparative Biosorption Studies of Hexavalent Chromium Ion onto Raw and Modified Palm Branches

Surface Chemistry and Catalysis Laboratory, National Research Centre, El-Dokki, Cairo 12622, Egypt

Received 29 March 2013; Revised 20 May 2013; Accepted 9 June 2013

Academic Editor: Marc Koper

Copyright © 2013 Mona A. Shouman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Dobrowolski and M. Otto, “Study of chromium(VI) adsorption onto modified activated carbons with respect to analytical application,” Adsorption, vol. 16, no. 4-5, pp. 279–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. U.S. Environmental Protection Agency, Toxicological Review of Hexavalent Chromium, National Center for Environmental Assessment, Office of Research and Development, Washington, DC, USA, 1998.
  3. R. J. Irwin, M. V. N. Mouwerik, L. Stevens, M. D. Seese, and W. Basham, Environmental Contaminants Encyclopedia Chromium (VI) (Hexavalent Chromium) Entry, National Park Service, Water Resources Division, Fort Collins, Colo, USA, 1971.
  4. D. Mohan, K. P. Singh, and V. K. Singh, “Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth,” Journal of Hazardous Materials, vol. 135, no. 1–3, pp. 280–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M.-N. Zhang, X.-P. Liao, and B. Shi, “Adsorption of surfactants on chromium leather waste,” Journal of the Society of Leather Technologies and Chemists, vol. 90, no. 1, pp. 1–6, 2006. View at Scopus
  6. L. Ramrakhiani, R. Majumder, and S. Khowala, “Removal of hexavalent chromium by heat inactivated fungal biomass of termitomyces clypeatus: surface characterization and mechanism of biosorption,” Chemical Engineering Journal, vol. 171, no. 3, pp. 1060–1068, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Rengaraj, C. K. Joo, Y. Kim, and J. Yi, “Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H,” Journal of Hazardous Materials, vol. 102, no. 2-3, pp. 257–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Ghosh and P. K. Bhattacharya, “Hexavalent chromium ion removal through micellar enhanced ultrafiltration,” Chemical Engineering Journal, vol. 119, no. 1, pp. 45–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Attia, S. A. Khedr, and S. A. Elkholy, “Adsorption of chromium ion (VI) by acid activated carbon,” Brazilian Journal of Chemical Engineering, vol. 27, no. 1, pp. 183–193, 2010. View at Scopus
  10. J. Cui, N. Zhao, N. Wei, J. Li, Z. Qiao, and F. He, “Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI),” Chemical Engineering Journal, vol. 115, no. 1-2, pp. 133–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. E. Marshall, L. H. Wartelle, D. E. Boler, M. M. Johns, and C. A. Toles, “Enhanced metal adsorption by soybean hulls modified with citric acid,” Bioresource Technology, vol. 69, no. 3, pp. 263–268, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-D. Choi, J.-M. Cho, K. Baek, J.-S. Yang, and J.-Y. Lee, “Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1565–1568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. H. Wartelle and W. E. Marshall, “Citric acid modified agricultural by-products as copper ion adsorbents,” Advances in Environmental Research, vol. 4, no. 1, pp. 1–7, 2000. View at Scopus
  14. C. A. Basar, C. Aydiner, S. Kara, and B. Keskinler, “Removal of CrO4 anions from waters using surfactant enhanced hybrid PAC/MF process,” Separation and Purification Technology, vol. 48, no. 3, pp. 270–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Baek and T. W. Yang, “Competitive bind of anionic metals with cetylpyridinium chloride micelle in micellar-enhanced ultrafiltration,” Desalination, vol. 167, no. 1–3, pp. 101–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Babel and T. A. Kurniawan, “Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan,” Chemosphere, vol. 54, no. 7, pp. 951–967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Wong, Y. S. Szeto, W. H. Cheung, and G. McKay, “Adsorption of acid dyes on chitosan-equilibrium isotherm analyses,” Process Biochemistry, vol. 39, no. 6, pp. 693–702, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Chatterjee and S. H. Woo, “The removal of nitrate from aqueous solutions by chitosan hydrogel beads,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1012–1018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-D. Choi, M.-C. Shin, D.-H. Kim, C.-S. Jeon, and K. Baek, “Removal characteristics of reactive black 5 using surfactant-modified activated carbon,” Desalination, vol. 223, no. 1–3, pp. 290–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Park, Y.-S. Yun, D. S. Lee, S.-R. Lim, and J. M. Park, “Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1377–1384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. de Oliveira Brito, H. M. C. Andrade, L. F. Soares, and R. P. de Azevedo, “Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions,” Journal of Hazardous Materials, vol. 174, no. 1–3, pp. 84–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Panumati, K. Chudecha, P. Vankhaew, et al., “Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse, oil palm shell and pericarp of rubber fruit,” Songklanakarin Journal of Science and Technology, vol. 30, no. 2, pp. 185–189, 2008. View at Scopus
  23. S. Chatterjee, M. W. Lee, and S. H. Woo, “Influence of impregnation of chitosan beads with cetyl trimethyl ammonium bromide on their structure and adsorption of congo red from aqueous solutions,” Chemical Engineering Journal, vol. 155, no. 1-2, pp. 254–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Swarnakar, N. Agrawal, and R. Tamar, “Sorption of Cr (VI) and As (V) on HDTMA-modified zeolites,” International Journal of Computational Science and Engineering, vol. 2, no. 5, pp. 1–9, 2011.
  25. E. Malkoc and Y. Nuhoglu, “Fixed bed studies for the sorption of chromium(VI) onto tea factory waste,” Chemical Engineering Science, vol. 61, no. 13, pp. 4363–4372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Dambies, C. Guimon, S. Yiacoumi, and E. Guibal, “Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy,” Colloids and Interface, vol. 177, no. 2-3, pp. 203–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-D. Choi, W.-S. Jung, J.-M. Cho, B.-G. Ryu, J.-S. Yang, and K. Baek, “Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 642–646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sharma and K. G. Bhattacharyya, “Adsorption of chromium (VI) on azadirachta indica (Neem) leaf powder,” Adsorption, vol. 10, no. 4, pp. 327–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Febrianto, A. N. Kosasih, J. Sunarso, Y. H. Ju, N. Indraswati, and S. Ismadji, “Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies,” Journal of Hazardous Materials, vol. 162, no. 2-3, pp. 616–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Aksu, “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris,” Process Biochemistry, vol. 38, no. 1, pp. 89–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Karadag, D. Saraydin, and O. Guven, “Cationic dye adsorption by acrylamide/itaconic acid hydrogels in aqueous solutions,” Polymers for Advanced Technologies, vol. 8, no. 9, pp. 574–578, 1997. View at Scopus
  32. C. H. Giles, T. H. MacEwan, S. N. Nakhwa, and D. Smith, “Studies in adsorption. part XI. a system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids,” Journal of the Chemical Society, vol. 786, pp. 3973–3993, 1960. View at Scopus
  33. X.-J. Hu, J.-S. Wang, Y.-G. Liu, et al., “Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 306–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Shafique, A. Ijaz, M. Salman, et al., “Removal of arsenic from water using pine leaves,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, no. 2, pp. 256–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. A. Aydin and N. D. Aksoy, “Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 188–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. W. H. Cheung, Y. S. Szeto, and G. McKay, “Intraparticle diffusion processes during acid dye adsorption onto chitosan,” Bioresource Technology, vol. 98, no. 15, pp. 2897–2904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Aksu and F. Gonen, “Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves,” Process Biochemistry, vol. 39, no. 5, pp. 599–613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. T. V. N. Padmesh, K. Vijayaraghavan, G. Sekaran, and M. Velan, “Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides,” Journal of Hazardous Materials, vol. 125, no. 1–3, pp. 121–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Malkoc, Y. Nuhoglu, and M. Dundar, “Adsorption of chromium(VI) on pomace-an olive oil industry waste: batch and column studies,” Journal of Hazardous Materials, vol. 138, no. 1, pp. 142–151, 2006. View at Publisher · View at Google Scholar · View at Scopus