About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 360239, 8 pages
http://dx.doi.org/10.1155/2013/360239
Research Article

Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements

Instituto de Física Aplicada-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Área de Química Física, Chacabuco 917, 5700 San Luis, Argentina

Received 25 March 2013; Accepted 9 May 2013

Academic Editor: Sylvio Canuto

Copyright © 2013 Martin Alberto Masuelli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Djabourov, “Gelation. A review,” Polymer International, vol. 25, no. 3, pp. 135–143, 1991. View at Scopus
  2. F. Franks, Solution Properties of Proteins, Elsevier, 1988.
  3. A. F. M. Barton, “Applications of solubility parameters and other cohesion parameters in polymer science and technology,” Pure and Applied Chemistry, vol. 57, no. 7, pp. 905–912, 1985. View at Publisher · View at Google Scholar
  4. A. F. M. Barton, “Solubility parameters,” Chemical Reviews, vol. 75, no. 6, pp. 731–753, 1975. View at Publisher · View at Google Scholar
  5. C. M. Hansen, “The universality of the solubility parameter,” Industrial and Engineering Chemistry Product Research and Development, vol. 8, no. 1, pp. 2–11, 1969. View at Publisher · View at Google Scholar
  6. D. Mangarj, S. K. Bhatnagar, and S. B. Rath, “Cohesive-energy-densities of high polymers—part. III: estimation of C. E. D. by viscosity measurements,” Die Makromolekulare Chemie, vol. 67, no. 1, pp. 75–83, 1963. View at Publisher · View at Google Scholar
  7. A. E. Bozdogan, “A method for determination of thermodynamic and solubility parameters of polymers from temperature and molecular weight dependence of intrinsic viscosity,” Polymer, vol. 45, no. 18, pp. 6415–6424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. I. L. Shulgin and E. Ruckenstein, “Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol,” Biophysical Chemistry, vol. 120, no. 3, pp. 188–198, 2005. View at Publisher · View at Google Scholar
  9. A. Guner, “The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems,” European Polymer Journal, vol. 40, no. 7, pp. 1587–1594, 2004. View at Publisher · View at Google Scholar
  10. R. Ravindra, K. R. Krovvidi, and A. A. Khan, “Solubility parameter of chitin and chitosan,” Carbohydrate Polymers, vol. 36, no. 2-3, pp. 121–127, 1998. View at Scopus
  11. X. P. Kong, J. Wang, C. J. Wang, and X. J. Wu, “Basicity, water solubility and intrinsic viscosity of carboxymethyl chitosan as a biofunctional material,” Advanced Materials Research, vol. 531, pp. 507–510, 2012. View at Publisher · View at Google Scholar
  12. B. Naskar, A. Dan, S. Ghosh, and S. P. Moulik, “Viscosity and solubility behavior of the polysaccharide inulin in water, water + dimethyl sulfoxide, and water + isopropanol media,” Journal of Chemical and Engineering Data, vol. 55, no. 7, pp. 2424–2427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Brodersen, “Bilirubin. Solubility and interaction with albumin and phospholipid,” Journal of Biological Chemistry, vol. 254, no. 7, pp. 2364–2369, 1979. View at Scopus
  14. P. Minghetti, F. Cilurzo, A. Casiraghi, and L. Montanari, “Application of viscometry and solubility parameters in miconazole patches development,” International Journal of Pharmaceutics, vol. 190, no. 1, pp. 91–101, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Bustamante, J. Navarro-Lupión, and B. Escalera, “A new method to determine the partial solubility parameters of polymers from intrinsic viscosity,” European Journal of Pharmaceutical Sciences, vol. 24, no. 2-3, pp. 229–237, 2005. View at Publisher · View at Google Scholar
  16. K. Adamska, A. Voelkel, and K. Heberger, “Selection of solubility parameters for characterization of pharmaceutical excipients,” Journal of Chromatography A, vol. 1171, no. 1-2, pp. 90–97, 2007. View at Publisher · View at Google Scholar
  17. E. Cohn, “The relation between the iso-electric point of a globulin and its solubility and acid combining capacity in salt solution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 6, no. 5, pp. 256–263, 1920. View at Publisher · View at Google Scholar
  18. E. J. Cohn and J. L. Hendry, “Studies in the physical chemistry of the proteins: II. The relation between the solubility of casein and its capacity to combine with base. The solubility of casein in systems containing the protein and sodium hydroxide,” Journal of General Physiology, vol. 5, no. 5, pp. 521–554, 1923. View at Publisher · View at Google Scholar
  19. K. L. Shaw, G. R. Grimsley, G. I. Yakovlev, A. A. Makarov, and C. N. Pace, “The effect of net charge on the solubility, activity, and stability of ribonuclease Sa,” Protein Science, vol. 10, no. 6, pp. 1206–1215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Schmittschmitt and J. M. Scholtz, “The role of protein stability, solubility, and net charge in amyloid fibril formation,” Protein Science, vol. 12, no. 10, pp. 2374–2378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Ferreira Machado, J. S. R. Coimbra, E. E. Garcia Rojas, L. A. Minim, F. C. Oliveira, and R. D. C. S. Sousa, “Solubility and density of egg white proteins: effect of pH and saline concentration,” LWT—Food Science and Technology, vol. 40, no. 7, pp. 1304–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Monkos, “Concentration and temperature dependence of viscosity in lysozyme aqueous solutions,” Biochimica et Biophysica Acta, vol. 1339, no. 2, pp. 304–310, 1997. View at Publisher · View at Google Scholar
  23. K. Monkos, “Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin,” Biophysical Chemistry, vol. 85, no. 1, pp. 7–16, 2000. View at Publisher · View at Google Scholar
  24. M. L. Olivares, M. B. Peirotti, and J. A. Deiber, “Analysis of gelatin chain aggregation in dilute aqueous solutions through viscosity data,” Food Hydrocolloids, vol. 20, no. 7, pp. 1039–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Curvale, M. Masuelli, and A. Perez Padilla, “Intrinsic viscosity of bovine serum albumin conformers,” International Journal of Biological Macromolecules, vol. 42, no. 2, pp. 133–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. M. N. Sousa, P. J. Morgan, J. R. Mitchell, S. E. Harding, and S. E. Hill, “Hydrodynamic characterization of Lupin proteins: solubility, intrinsic viscosity, and molar mass,” Journal of Agricultural and Food Chemistry, vol. 44, no. 10, pp. 3018–3021, 1996. View at Scopus
  27. J. L. Shen, “Solubility profile, intrinsic viscosity, and optical rotation studies of acid precipitated soy protein and of commercial soy isolate,” Journal of Agricultural and Food Chemistry, vol. 24, no. 4, pp. 784–788, 1976. View at Publisher · View at Google Scholar
  28. T. Arakawa and S. N. Timasheff, “Theory of protein solubility,” Methods in Enzymology, vol. 114, pp. 49–77, 1985. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Peters, All Albumin, Elsevier, 1993.
  30. I. S. Haworth, Protein Solubility. Chemistry: Foundations and Applications, 2004, http://www.encyclopedia.com/doc/1G2-3400900422.html.
  31. M. A. Masuelli, “Viscometric study of pectin. Effect of temperature on the hydrodynamic properties,” International Journal of Biological Macromolecules, vol. 48, no. 2, pp. 286–291, 2011. View at Publisher · View at Google Scholar
  32. O. Segarceanua and M. Leca, “Improved method to calculate Hansen solubility parameters of a polymer,” Progress in Organic Coatings, vol. 31, no. 4, pp. 307–310, 1997. View at Publisher · View at Google Scholar
  33. K. Monkos, “Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration,” International Journal of Biological Macromolecules, vol. 18, pp. 61–68, 1996.
  34. K. Monkos, “On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach,” Biochimica et Biophysica Acta, vol. 1700, no. 1, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Agostini, M. Vendruscolo, and G. G. Tartaglia, “Sequence-based prediction of protein solubility,” Journal of Molecular Biology, vol. 421, no. 2-3, pp. 237–241, 2012. View at Publisher · View at Google Scholar
  36. J. Jiang, Y. L. Xiong, and J. Chen, “pH shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions,” Journal of Agricultural and Food Chemistry, vol. 58, no. 13, pp. 8035–8042, 2010. View at Publisher · View at Google Scholar
  37. J. I. Boye, I. Alli, and A. A. Ismail, “Interactions involved in the gelation of bovine serum albumin,” Journal of Agricultural and Food Chemistry, vol. 44, no. 4, pp. 996–1004, 1996. View at Scopus
  38. A. H. Clark, G. M. Kavanagh, and S. B. Ross-Murphy, “Globular protein gelation—theory and experiment,” Food Hydrocolloids, vol. 15, no. 4–6, pp. 383–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. G. Pelegrine and C. A. Gasparetto, “Whey proteins solubility as function of temperature and pH,” LWT—Food Science and Technology, vol. 38, no. 1, pp. 77–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. H. van Holde, Physical Biochemistry, Prentice Hall, Englewood Cliffs, NJ, USA, 1971.
  41. K. C. Fan, M. Song, and R. S. Lu, “Measurement system of tiny angle based on LED,” in Seventh International Symposium on Precision Engineering Measurements and Instrumentation, vol. 8321, Yunnan, China, August 2011. View at Publisher · View at Google Scholar
  42. R. Wetzel, M. Becker, J. Behlke et al., “Temperature behaviour of human serum albumin,” European Journal of Biochemistry, vol. 104, no. 2, pp. 469–478, 1980. View at Publisher · View at Google Scholar
  43. K. Takeda, A. Wada, K. Yamamoto, Y. Moriyama, and K. Aoki, “Conformational change of bovine serum albumin by heat treatment,” Journal of Protein Chemistry, vol. 8, no. 5, pp. 653–659, 1989. View at Publisher · View at Google Scholar · View at Scopus
  44. C. N. Pace, S. D. Teviño, E. Prabhakaran, and J. M. Scholtz, “Protein structure, stability and solubility in water and other solvents,” Philosophical Transactions of the Royal Society B, vol. 39, no. 1448, pp. 1225–1235, 2004. View at Publisher · View at Google Scholar