About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 394697, 8 pages
http://dx.doi.org/10.1155/2013/394697
Research Article

Second Harmonic Generation, Electrooptical Pockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation

Department of Chemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Received 29 September 2013; Accepted 30 October 2013

Academic Editor: Miquel Solà

Copyright © 2013 Andrea Alparone. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The static and dynamic electronic (hyper)polarizabilities of the equilibrium conformations of 2,2′-bithiophene (anti-gauche and syn-gauche) were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2), and density functional theory methods. The properties were evaluated for the second harmonic generation (SHG), and electrooptical Pockels effect (EOPE) nonlinear optical processes at the typical nm of the Nd:YAG laser. The anti-gauche form characterized by the dihedral angle of 137° (MP2/6-311G**) is the global minimum on the potential energy surface, whereas the syn-gauche rotamer ( = 48°, MP2/6-311G**) lies ca. 0.5 kcal/mol above the anti-gauche form. The structural properties of the gauche structures are rather similar to each other. The MP2 electron correlation effects are dramatic for the first-order hyperpolarizabilities of the 2,2′-bithiophenes, decreasing the HF values by ca. a factor of three. When passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more intense SHG and EOPE signals.