About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 835610, 11 pages
http://dx.doi.org/10.1155/2013/835610
Research Article

Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

Department of Chemistry, Osmania University, Hyderabad 500 007, India

Received 1 January 2013; Revised 23 April 2013; Accepted 7 May 2013

Academic Editor: Jeffrey M. Zaleski

Copyright © 2013 S. Shylaja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin, Germany, 1987.
  2. K. B. Wiberg, Oxidations in Organic Chemistry (Part A), Academic Press, 1965.
  3. W. S. Trahanosky, Oxidations in Organic Chemistry (Part B), Academic Press, 1968.
  4. P. Renaud and M. P. Sibi, Radicals in Organic Synthesis, vol. 1, Wiley-VCH, Weinheim, Germany, 2001.
  5. N. L. Bauld, “Hole and electron transfer catalyzed pericyclic reactions,” in Advances in Electron Transfer Chemistry, vol. 2, pp. 1–66, 1992.
  6. M. Chanon, M. Rajzmann, and F. Chanon, “One electron more, one electron less. What does it change? Activations induced by electron transfer. The electron, an activating messenger,” Tetrahedron, vol. 46, no. 18, pp. 6193–6299, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Schmittel, “Ketene-diene [4 + 2] cycloaddition products via cation radical initiated Diels-Alder reaction or vinylcyclobutanone rearrangement,” Journal of the American Chemical Society, vol. 115, no. 6, pp. 2165–2177, 1993. View at Publisher · View at Google Scholar
  8. M. Schmittel and C. Wöhrle, “Electron transfer initiated Diels-Alder reaction with allenes as dienophiles,” Tetrahedron Letters, vol. 34, no. 52, pp. 8431–8434, 1993. View at Publisher · View at Google Scholar
  9. A. Gieseler, E. Steckhan, O. Wiest, and F. Knoch, “Photochemically induced radical cation Diels-Alder reaction of indole and electron-rich dienes,” Journal of Organic Chemistry, vol. 56, no. 4, pp. 1405–1411, 1991. View at Scopus
  10. M. Schmittel, “Ammoniumyl salt-induced Diels-Alder reaction of ketenes-control of [2 + 2] versus [4 + 2] selectivity,” Angewandte Chemie, vol. 30, no. 8, pp. 999–1001, 1991. View at Publisher · View at Google Scholar
  11. N. L. Bauld, “Cation radical cycloadditions and related sigmatropic reactions,” Tetrahedron, vol. 45, no. 17, pp. 5307–5363, 1989. View at Scopus
  12. P. E. Floreancig, “Development and applications of electron-transfer-initiated cyclization reactions,” Synlett, no. 2, pp. 191–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Schmittel, “Umpolung of ketones via enol radical cations,” in Topics in Current Chemistry, vol. 169, pp. 183–230, 1994. View at Publisher · View at Google Scholar
  14. M. Schmittel and A. Burghart, “Understanding reactivity patterns of radical cations,” Angewandte Chemie, vol. 36, no. 23, pp. 2550–2589, 1997. View at Publisher · View at Google Scholar
  15. M. Schmittel and A. Langels, “A short-lived radical dication as a key intermediate in the rearrangement of a persistent cation: the oxidative cyclization of 2,2-dimesityl-1-(4-N,N-dimethylaminophenyl)ethenol,” Angewandte Chemie, vol. 36, no. 4, pp. 392–395, 1997. View at Publisher · View at Google Scholar
  16. M. Rock and M. Schmittel, “Controlled oxidation of enolates to a-carbonyl radicals and a-carbonyl cations,” Journal of the Chemical Society, Chemical Communicationspp, no. 23, pp. 1739–1741, 1993. View at Publisher · View at Google Scholar
  17. V. Nair, L. Balagopal, R. Rajan, and J. Mathew, “Recent advances in synthetic transformations mediated by Cerium(IV) ammonium nitrate,” Accounts of Chemical Research, vol. 37, no. 1, pp. 21–30, 2004.
  18. V. Nair, J. Mathew, and J. Prabhakaran, “Carbon-carbon bond forming reactions mediated by cerium(IV) reagents,” Chemical Society Reviews, vol. 26, no. 2, pp. 127–132, 1997.
  19. E. Baciocchi and R. Ruzziconi, “1,2- and 1,4-addition in the reactions of carbonyl compounds with 1,3-butadiene induced by cerium(IV) ammonium nitrate,” Journal of Organic Chemistry, vol. 51, no. 10, pp. 1645–1649, 1986. View at Publisher · View at Google Scholar
  20. A. B. Paolobelli, P. Ceccherelli, F. Pizzo, and R. J. Ruzziconi, “Regio- and stereoselective synthesis of unsaturated carbonyl compounds based on ceric ammonium nitrate-promoted oxidative addition of trimethylsilyl enol ethers to conjugated dienes,” The Journal of Organic Chemistry, vol. 60, no. 15, pp. 4954–4958, 1995. View at Publisher · View at Google Scholar
  21. J. R. Hwu, C. N. Chen, and S. S. Shiao, “Silicon-controlled allylation of 1,3-dioxo compounds by use of allyltrimethylsilane and ceric ammonium nitrate,” The Journal of Organic Chemistry, vol. 60, no. 4, pp. 856–862, 1995. View at Publisher · View at Google Scholar
  22. V. Nair and J. Mathew, “Facile synthesis of dihydrofurans by the cerium(IV) ammonium nitrate mediated oxidative addition of 1,3-dicarbonyl compounds to cyclic and acyclic alkenes. Relative superiority over the manganese(III) acetate,” Journal of the Chemical Society, Perkin Transactions 1, no. 3, pp. 187–188, 1995. View at Publisher · View at Google Scholar
  23. V. Nair, J. Mathew, and S. Alexander, “Synthesis of spiroannulated dihydrofurans by cerium(IV) ammonium nitrate mediated addition Of 1,3-dicarbonyl compounds to exocyclic alkenes,” Synthetic Communications, vol. 25, no. 24, pp. 3981–3991, 1995. View at Publisher · View at Google Scholar
  24. B. B. Snider and T. Kwon, “Oxidative cyclization of .delta.,.epsilon.- and .epsilon.,.zeta.-unsaturated enol silyl ethers and unsaturated siloxycyclopropanes,” The Journal of Organic Chemistry, vol. 57, no. 8, pp. 2399–2410, 1992. View at Publisher · View at Google Scholar
  25. A. J. Clark, C. P. Dell, J. M. McDonagh, J. Geden, and P. Mawdsley, “Oxidative 5-endo cyclization of enamides mediated by ceric ammonium nitrate,” Organic Letters, vol. 5, no. 12, pp. 2063–2066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Schmittel, G. Gescheidt, and M. Rock, “The first spectroscopic identification of an enol radical cation in solution: the anisyl-dimesitylethenol radical cation,” Angewandte Chemie, vol. 33, no. 19, pp. 1961–1963, 1994. View at Publisher · View at Google Scholar
  27. M. Schmittel and A. Langels, “Enol radical cations in solution. Part 12: synthesis and electrochemical investigations of a stable enol linked to a ferrocene redox centre,” Journal of the Chemical Society, Perkin Transactions 2, no. 3, pp. 565–572, 1998. View at Publisher · View at Google Scholar
  28. M. Schmittel and A. Langels, “Enol radical cations in solution. 13. First example of a radical dication rearrangement. One-electron oxidation of dihydrobenzofuranyl cations leads to drastic rate enhancement in the oxidative benzofuran formation from enols,” The Journal of Organic Chemistry, vol. 63, no. 21, pp. 7328–7337, 1998. View at Publisher · View at Google Scholar
  29. V. N. Vasudevan and S. V. Rajendra, “Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG),” Green Chemistry, no. 3, pp. 146–148, 2001. View at Publisher · View at Google Scholar
  30. A. Haimov and R. Neumann, “Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation,” Chemical Communications, no. 8, pp. 876–877, 2002. View at Publisher · View at Google Scholar
  31. L. Heiss and H. J. Gais, “Polyethylene glycol monomethyl ether-modified pig liver esterase: preparation, characterization and catalysis of enantioselective hydrolysis in water and acylation in organic solvents,” Tetrahedron Letters, vol. 36, no. 22, pp. 3833–3836, 1995.
  32. S. Chandrasekar, C. Narsihmulu, S. S. Shameem, and N. R. Reddy, “Osmium tetroxide in poly(ethylene glycol)(PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions,” Chemical Communications, no. 14, pp. 1716–1717, 2003. View at Publisher · View at Google Scholar
  33. K. Tanemura, T. Suzuki, Y. Nishida, and T. Horaguchi, “Aldol condensation in water using polyethylene glycol 400,” Chemistry Letters, vol. 34, no. 4, pp. 576–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Kumar, P. Chaudhary, S. Nimesh, and R. Chandra, “Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes,” Green Chemistry, vol. 8, no. 4, pp. 356–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. V. Rao and S. S. Muhammed, “Studies in the two phases system sodium formate-yridine. Extraction of nickel and separation from chromium,” Bulletin of the Chemical Society of Japan, vol. 36, no. 8, pp. 941–943, 1963. View at Publisher · View at Google Scholar
  36. S. S. Muhammed and B. Sethuram, “Upper carboniferous flora from the Mecsek Mts (Southern Hungary)—summarized results,” Acta Geologica Hungarica, vol. 46, no. 1, pp. 115–125, 1965. View at Publisher · View at Google Scholar
  37. M. Santappa and B. Sethuram, “Oxidation studies. IV. Kinetics of oxidation of HCHO and some alcohols by ceric salts in HNO3 medium,” Proceedings of the Indian Academy of Sciences A, vol. 67, pp. 78–89, 1968.
  38. N. Dutt, R. R. Nagori, and R. N. Mehrotra, “Kinetics and mechanisms of oxidations by metal ions. Part VI. Oxidation of a-hydroxy acids by cerium(IV) in aqueous nitric acid,” Canadian Journal of Chemistry, vol. 64, no. 1, pp. 19–23, 1986. View at Publisher · View at Google Scholar
  39. K. C. Rajanna, Y. R. Rao, and P. K. Saiprakash, “Kinetic and mechanistic study of isopropanol and acetone by Ceric sulphate in aqueous sulphuric acid medium,” Indian Journal of Chemistry A, vol. 17, p. 270, 1977.
  40. J. H. Fendler and R. J. Fendler, Catalysis in Micellar and Micro-Molecular Systems, Academic Press, New York, NY, USA, 1975.
  41. J. Van Stam, S. Depaemelaere, and F. C. De Schryver, “Micellar aggregation numbers—a fluorescence study,” Journal of Chemical Education, vol. 75, no. 1, pp. 93–98, 1998. View at Scopus
  42. J. H. Fendler and W. L. Hinze, “Reactivity control in micelles and surfactant vesicles. Kinetics and mechanism of base-catalyzed hydrolysis of 5,5'-dithiobis(2-nitrobenzoic acid) in water, hexadecyltrimethylammonium bromide micelles, and dioctadecyldimethylammonium chloride surfactant vesicles,” Journal of the American Chemical Society, vol. 103, no. 18, pp. 5439–5447, 1981. View at Publisher · View at Google Scholar
  43. L. S. Romsted, “A general kinetic theory of rate enhancements for reactions between organic substrates and hydrophilic ions in micellar systems,” in Micellization, Solubilization, and Microemulsions, K. L. Mittal, Ed., vol. 2, pp. 509–530, Plenum Press, New York, NY, USA, 1977. View at Publisher · View at Google Scholar
  44. F. M. Menger and C. E. Portnoy, “On the chemistry of reactions proceeding inside molecular aggregates,” Journal of the American Chemical Society, vol. 89, no. 18, pp. 4698–4703, 1967. View at Scopus
  45. F. M. Menger, “Groups of organic molecules that operate collectively,” Angewandte Chemie, vol. 30, no. 9, pp. 1086–1099, 1991. View at Publisher · View at Google Scholar
  46. K. A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, VCH, New York, NY, USA, 1990.
  47. J. Espenson, Chemical Kinetics and Reaction Mechanism, McGraw-Hill, 1981.
  48. J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, New York, NY, USA, 1963.
  49. H. Maskill, The Physical Basis of Organic Chemistry, Oxford University Press, Oxford, UK, 1986.
  50. V. Jagannadham, “The change in entropy of activation due to solvation/hydration—a one hour graduate classroom lecture,” Chemistry, vol. 18, no. 4, p. 89, 2009.