About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 905910, 8 pages
http://dx.doi.org/10.1155/2013/905910
Research Article

Theoretical Study on the Static (Hyper)Polarizabilities of α-t-Bu-ω-CN-Poly(methylphenyl)silane

Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China

Received 12 January 2013; Accepted 4 March 2013

Academic Editor: Bernard Kirtman

Copyright © 2013 Jing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Mimura, H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Inoue, “Optical properties of (organic polysilane)-(inorganic matrix) hybrid thin films,” Journal of Luminescence, vol. 87, pp. 715–717, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Matsukawa, T. Tamai, and H. Inoue, “Photoconductive properties of polysilane copolymers with pendant siloxane groups,” Applied Physics Letters, vol. 77, no. 5, pp. 675–677, 2000. View at Scopus
  3. A. Sharma, M. Katiyar, Deepak, S. Seki, and S. Tagawa, “Room temperature ultraviolet emission at 357 nm from polysilane based organic light emitting diode,” Applied Physics Letters, vol. 88, no. 14, Article ID 143511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Hiramoto, Y. Sakata, and M. Yokoyama, “Patterned emission in organic electroluminescent device using photodecomposition of polysilane film by UV light,” Japanese Journal of Applied Physics A, vol. 35, no. 9, pp. 4809–4812, 1996. View at Scopus
  5. L. Sacarescu, I. Mangalagiu, M. Simionescu, G. Sacarescu, and R. Ardeleanu, “Polysilanes. A new route toward high performance EL devices,” Macromolecular Symposia, vol. 267, no. 1, pp. 123–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ebihara, S. Matsushita, S. Koshihara et al., “Ultraviolet luminescence and electro-luminescence of polydihexylsilane,” Journal of Luminescence, vol. 72–74, pp. 43–45, 1997. View at Scopus
  7. F. Kajzar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” Journal of Applied Physics, vol. 60, no. 9, pp. 3040–3044, 1986. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Baumert, G. C. Bjorklund, D. H. Jundt et al., “Temperature dependence of the third-order nonlinear optical susceptibilities in polysilanes and polygermanes,” Applied Physics Letters, vol. 53, no. 13, pp. 1147–1149, 1988. View at Publisher · View at Google Scholar · View at Scopus
  9. D. B. Chen, G. Q. Li, and Z. H. Zhou, “Polysilanes-a class of new and distinct non-linear optical materials,” Chemical Research and Application, vol. 5, no. 2, pp. 8–14, 1993.
  10. B. C. Shi, M. G. Zhang, G. W. Li, Y. Y. Li, M. Y. Wang, and Z. Li, “The synthesis of poly(methylphenyl)silane and investigation on its nonlinear optical properties,” Journal of NanJing Normal University, vol. 20, no. 3, pp. 26–29, 1997.
  11. H. D. Tang, J. D. Luo, J. G. Qin, H. Kang, and C. Ye, “A novel synthetic strategy to develop second-order nonlinear optical polysilanes for potential photorefractive effects,” Macromolecular Rapid Communications, vol. 21, no. 16, pp. 1125–1129, 2000. View at Scopus
  12. B. Champagne, E. A. Perpète, D. Jacquemin et al., “Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push-pull π-conjugated systems,” Journal of Physical Chemistry A, vol. 104, no. 20, pp. 4755–4763, 2000. View at Scopus
  13. M. Torrent-Sucarrat, M. Solà, M. Duran, J. M. Luis, and B. Kirtman, “Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules,” Journal of Chemical Physics, vol. 118, no. 2, pp. 711–718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E. 01, Gaussian Inc., Wallingford, Conn, USA, 2004.
  15. A. E. Reed and F. Weinhold, “Natural bond orbital analysis of near-Hartree-Fock water dimer,” The Journal of Chemical Physics, vol. 78, no. 6, pp. 4066–4073, 1983. View at Scopus
  16. A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,” The Journal of Chemical Physics, vol. 83, no. 2, pp. 735–746, 1985. View at Scopus
  17. R. D. Dennington II, T. A. Keith, J. Millam, A. B. Nielsen, A. J. Holder, and J. Hiscocks, GaussView, Version 5.0, Gaussian Inc., Wallingford, Conn, USA, 2009.
  18. B. Kirtman and M. Hasan, “Linear and nonlinear polarizabilities of trans-polysilane from ab initio oligomer calculations,” The Journal of Chemical Physics, vol. 96, no. 1, pp. 470–479, 1992. View at Scopus
  19. G. J. B. Hurst, M. Dupuis, and E. Clementi, “Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: applications to polyenes C4H6 to C22H24,” The Journal of Chemical Physics, vol. 89, no. 1, pp. 385–395, 1988. View at Scopus
  20. J. Li, Z. Li, H. Tang, H. Zeng, and J. Qin, “Polysilanes with NLO chromophores as pendant groups by utilizing different synthetic strategies,” Journal of Organometallic Chemistry, vol. 685, no. 1-2, pp. 258–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Halbout and C. L. Tang, “Properties and applications of ureaeds,” in Nonlinear Optical Properties of Organic Molecular and Crystals, D. S. Chemla and J. Zyss, Eds., Academic Press, New York, NY, USA, 1987.
  22. K. C. Wu, R. J. Sa, J. Li et al., “Theoretical study on the linear and nonlinear optical polarizabilities of urea clusters,” Jiegou Huaxue, vol. 20, no. 4, pp. 323–324, 2001. View at Scopus