About this Journal Submit a Manuscript Table of Contents
Advances in Physical Chemistry
Volume 2013 (2013), Article ID 948189, 8 pages
http://dx.doi.org/10.1155/2013/948189
Review Article

Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies: A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures

1Department of Physics, Faculty of Sciences, University of Abou Bekr Belkaid, Tlemcen, Algeria
2Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15243, USA

Received 26 November 2012; Revised 26 March 2013; Accepted 27 March 2013

Academic Editor: Francesco Paolucci

Copyright © 2013 A. Benmouna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. H. Bube, Photovoltaic Materials, Imperial College Press, London, UK, 1998.
  2. S. S. Sun and N. S. Sariciftci, Eds., Organic Photovoltaics: Mechanisms, Materials, and Devices, CRC Press, Boca Raton, Fla, USA, 2005.
  3. B. C. Thompson and J. M. Fréchet, “Polymer-fullerene composite solar cells,” Angewandte Chemie International Edition, vol. 47, no. 1, pp. 58–77, 2008.
  4. J. M. Nunzi, “Organic photovoltaic materials and devices,” Comptes Rendus Physique, vol. 3, no. 4, pp. 523–342, 2008.
  5. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, vol. 107, no. 4, pp. 1324–1338, 2007.
  6. T. S. Huang, C. Y. Huang, Y. K. Su, et al., “High-efficiency polymer photovoltaic devices with glycerol-modified buffer layer,” IEEE Photonics Technology Letters, vol. 20, no. 23, pp. 1935–1937, 2008.
  7. W. Wang, H. Wu, C. Yang et al., “High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl- C61-butyric acid methyl ester processed with oleic acid surfactant,” Applied Physics Letters, vol. 90, no. 18, Article ID 183512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl- (6,6) C61 blends,” Applied Physics Letters, vol. 87, no. 8, Article ID 083506, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W.-L Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, no. 10, pp. 1617–1622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Segalman, C. Brochon, and G. Hadziioannou, “Solar Cells Based on Diblock Copolymers: a PPV donor block and a fullerene derivatized acceptor block,” in Organic Photovoltaics: Mechanisms, Materials, and Devices, S.-S. Sun and N. S. Sariciftci, Eds., CRC Press, Boca Raton, Fla, USA, 2005.
  11. J. L. Brédas and R. Silbey, “Excitons surf along conjugated polymer chains,” Science, vol. 323, pp. 348–349, 2009.
  12. E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science, vol. 323, no. 5912, pp. 369–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, “Block copolymers for organic optoelectronics,” Macromolecules, vol. 42, no. 23, pp. 9205–9216, 2009.
  14. J. A. Malen, P. Doak, K. Baheti, T. D. Tilley, R. A. Segalman, and A. Majumdar, “The nature of transport variations in molecular heterojunction electronics,” Nano Letters, vol. 9, no. 10, pp. 3406–3412, 2009.
  15. L. J. Lindgren, F. Zhang, M. Andersson et al., “Synthesis, characterization, and devices of a series of alternating copolymers for solar cells,” Chemistry of Materials, vol. 21, no. 15, pp. 3491–3502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Sommer, S. M. Lindner, and M. Thelakkat, “Microphase-separated donor-acceptor diblock copolymers: influence of HOMO energy levels and morphology on polymer solar cells,” Advanced Functional Materials, vol. 17, no. 9, pp. 1493–1500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. G. Cloutier, “Hybrid polyfluorene-based optoelectronic devices,” in Advanced Photonic Sciences, M. Fadhali, Ed., In Tech, 2012.
  18. M. T. Dang, L. Hirsch, and G. Want, “P3HT:PCBM, best seller in polymer photovoltaic research,” Advanced Materials, vol. 23, no. 31, pp. 3597–3602, 2011.
  19. D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, “P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology,” Nano Letters, vol. 11, no. 2, pp. 561–567, 2011.
  20. J. Szmytkowski, “Modeling the electrical characteristics of P3HT:PCBM bulk heterojunction solar cells: implementing the interface recombination,” Semiconductor Science and Technology, vol. 25, no. 1, Article ID 015009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, “Block copolymer nanocomposites: perspectives for tailored functional materials,” Advanced Materials, vol. 17, no. 11, pp. 1331–1349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Leibler, “Theory of microphase separation in block copolymers,” Macromolecules, vol. 13, no. 6, pp. 1602–1617, 1980. View at Scopus
  23. F. S. Bates and G. H. Fredrickson, “Block copolymer thermodynamics: theory and experiment,” Annual Review of Physical Chemistry, vol. 41, no. 1, pp. 525–557, 1990. View at Scopus
  24. F. Holger, “Block copolymer phases of diblock, triblock and miktoarm star copolymers,” can be found under, http://lmom.epfl.ch/courses/class_supramolecular_24.pdf.
  25. I. W. Hamley, Introduction to Block Copolymers, John Wiley & Sons, 2004.
  26. U. Mitschke and P. Bäuerle, “The electroluminescence of organic materials,” Journal of Materials Chemistry, vol. 10, pp. 1471–1507, 2000.
  27. R. E. Martin, F. Geneste, and A. B. Holmes, “Synthesis of conjugated polymers for application in light-emitting diodes (PLEDs),” Comptes Rendus de l’Académie des Sciences Paris 1, pp. 447–470, 2000.
  28. R. B. Thompson, V. V. Ginzburg, M. W. Matsen, and A. C. Balazs, “Predicting the mesophases of copolymer-nanoparticle composites,” Science, vol. 292, pp. 2469–2472, 2001.
  29. H. Tanaka, H. Hasegawa, and T. Hashimoto, “Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers,” Macromolecules, vol. 24, no. 1, pp. 240–251, 1991. View at Scopus
  30. K. I. Winey, E. L. Thomas, and L. J. Fetters, “Swelling a lamellar diblock copolymer with homopolymer: influences of homopolymer concentration and molecular weight,” Macromolecules, vol. 24, no. 23, pp. 6182–6188, 1991. View at Scopus
  31. J. J. Chiu, B. J. Kim, E. J. Kramer, and D. J. Pine, “Control of nanoparticle location in block copolymers,” Journal of the American Chemical Society, vol. 127, pp. 5036–5037, 2005.
  32. J. Listak, I. F. Hakem, H. J. Ryu et al., “Effect of chain architecture on the compatibility of block copolymer/nanoparticle blends,” Macromolecules, vol. 42, no. 15, pp. 5766–5773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Zhang, K. Tajima, and K. Hashimoto, “Nanostructure formation in poly(3-hexylthiophene-block- 3-(2-ethylhexyl)thiophene)s,” Macromolecules, vol. 42, no. 18, pp. 7008–7015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. C. Tseng and S. B. Darling, “Block copolymer nanostructures for technology,” Polymers, vol. 2, no. 4, pp. 470–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. D. Olsen and R. A. Segalman, “Structure and thermodynamics of weakly segregated rod-coil block copolymers,” Macromolecules, vol. 38, no. 24, pp. 10127–10137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. J. Flory, Introduction to Polymer Chemistry, Cornell University Press Ithaca, 1956.
  37. P. J. de Gennes, Basic Concepts in Polymer Physics, Cornell University Press Ithaca, 1979.
  38. I. F. Hakem, M. R. Bockstaller, A. Benmouna, R. Benmouna, and M. Benmouna, “Structural characterization of iron oxide nanoparticles doped norbornene-norbornene dicarboxylic acid diblock copolymers: theory versus experiments,” in preparation.
  39. R. Duan, L. Ye, X. Guo, et al., “Application of two-dimensional conjugated benzo[1,2-b:4,5-b′]dithiophene in Quinoxaline—Based Photovoltaic Polymers,” Macromolecules, vol. 45, no. 7, pp. 3032–3038, 2012.
  40. M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM “plastic” solar cells,” Chemical Communications, vol. 9, no. 17, pp. 2116–2118, 2003. View at Scopus
  41. Y. Kim, S. Cook, S. M. Tuladhar et al., “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nature Materials, vol. 5, no. 3, pp. 197–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Bechara, N. Leclerc, P. Lévêque, F. Richard, T. Heiser, and G. Hadziioannou, “Efficiency enhancement of polymer photovoltaic devices using thieno-thiophene based copolymers as nucleating agents for polythiophene crystallization,” Applied Physics Letters, vol. 93, no. 1, Article ID 013306, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Lindner and M. Thelakkat, “Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers,” Macromolecules, vol. 37, no. 24, pp. 8832–8835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Lindner, S. Hüttner, A. Chiche, M. Thelakkat, and G. Krausch, “Charge separation at self-assembled nanostructured bulk interface in block copolymers,” Angewandte Chemie, vol. 45, no. 20, pp. 3364–3368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Sary, R. Mezzenga, C. Brochon, G. Hadziioannou, and J. Ruokolainen, “Weakly segregated smectic C lamellar clusters in blends of rods and rod-coil block copolymers,” Macromolecules, vol. 40, no. 9, pp. 3277–3286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. C. Iovu, C. Rockford Craley, E. M. Jeffries et al., “Conducting regioregular polythiophene block copolymer nanofibrils synthesized by reversible addition fragmentation chain transfer polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP),” Macromolecules, vol. 40, no. 14, pp. 4733–4735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Gernigon, P. Lévêque, C. Brochon, et al., “Fullerene-grafted block copolymers used as compatibilizer in P3HT/PCBM bulk heterojunctions: morphology and photovoltaic performances,” The European Physical Journal, vol. 56, no. 3, pp. 34107–34112, 2011.
  48. F. Brochard, J. Jouffroy, and P. Levinson, “Phase diagrams of mesomorphic mixtures,” Journal de Physique Paris, vol. 45, no. 7, pp. 1125–1136, 1984. View at Scopus
  49. R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, “Block copolymers for organic optoelectronics,” Macromolecules, vol. 42, no. 23, pp. 9205–9216, 2009.
  50. A. M. Rosales, B. L. McCulloch, R. N. Zuckermann, and R. A. Segalman, “Tunable phase behavior of polystyrene-polypeptoid block copolymers,” Macromolecules, vol. 45, no. 15, pp. 6027–6035, 2012.
  51. M. A. Villar, D. R. Rueda, F. Ania, and E. L. Thomas, “Study of oriented block copolymers films obtained by roll-casting,” Polymer, vol. 43, no. 19, pp. 5139–5145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. J. W. Park and E. L. Thomas, “Multiple ordering transitions: hierarchical self-assembly of rod–coil block copolymers,” Advanced Materials, vol. 15, no. 78, pp. 585–588, 2003.
  53. J. A. Odell, A. Keller, E. D. T. Atkins, and M. J. Miles, “Structural studies of poly(p-phenylene benzbisthiazole) films,” Journal of Materials Science, vol. 16, no. 12, pp. 3309–3318, 1981. View at Publisher · View at Google Scholar · View at Scopus
  54. M. C. Iovu, R. Zhang, J. R. Cooper et al., “Conducting block copolymers of regioregular poly(3-hexylthiophene) and poly(methacrylates): electronic materials with variable conductivities and degrees of interfibrillar order,” Macromolecular Rapid Communications, vol. 28, no. 17, pp. 1816–1824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Zotti, B. Vercelli, A. Berlin et al., “Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 2. Multilayers of CdSe nanocrystals and oligo(poly)thiophene- based molecules. Optical, electrochemical, photoelectrochemical, and photoconductive properties,” Chemistry of Materials, vol. 22, no. 4, pp. 1521–1532, 2010. View at Publisher · View at Google Scholar · View at Scopus