Advances in Physical Chemistry The latest articles from Hindawi Publishing Corporation © 2015 , Hindawi Publishing Corporation . All rights reserved. DFT Study of a Novel Organic Film: The Structural versus Magnetic Effects Sun, 29 Nov 2015 13:00:44 +0000 Unsaturated fatty acids have great interest by their activities as industrial materials in novel applications. In the present work, the cis-3-hexenoic acid (HA) adsorbed on the Ni(111) surface was studied by first-principles calculations using the Vienna Ab Initio Simulation Package (VASP). The most stable location for HA is presented on top site of Ni(111), although the energies are very similar for all the adsorption sites. The surface-molecule interaction takes place between the carboxyl group of HA and surrounding Ni atoms. The adsorption is weak and consequently the metal-molecule length is enhanced. The carboxyl group is elongated and weakened after adsorption giving rise to a shift in stretching frequencies. There are notable changes on the magnetic moments values of Ni surface atoms neighboring to the molecule that mainly induced magnetic moments on O and H atoms. Noticeable charge transfer occurs in 3d 4s, p Ni orbitals and 2s C, 2s p O, 1s H orbitals of carboxyl group. The surface presents positive work function changes after adsorption as a consequence of an electron back-donation. During interaction, the significance of the magnetic effects over the structural effects is evidenced. This sets the stage for a future adsorption process improvement based on the modification of the surface magnetic properties. S. Simonetti, A. Juan, G. Brizuela, and S. Ulacco Copyright © 2015 S. Simonetti et al. All rights reserved. Geometry, Energy, and Some Electronic Properties of Carbon Polyprismanes: Ab Initio and Tight-Binding Study Mon, 26 Oct 2015 14:24:12 +0000 We report geometry, energy, and some electronic properties of [n,4]- and [n,5]prismanes (polyprismanes): a special type of carbon nanotubes constructed from dehydrogenated cycloalkane C4- and C5-rings, respectively. Binding energies, interatomic bonds, and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated using density functional approach and nonorthogonal tight-binding model for the systems up to thirty layers. It is found that polyprismanes become more thermodynamically stable as their effective length increases. Moreover, they may possess semiconducting properties in the bulk limit. Konstantin P. Katin, Stanislav A. Shostachenko, Alina I. Avkhadieva, and Mikhail M. Maslov Copyright © 2015 Konstantin P. Katin et al. All rights reserved. DFT Study on the Oxidative Addition of 4-Substituted Iodobenzenes on Pd(0)-Phosphine Complexes Sun, 04 Oct 2015 13:06:56 +0000 The oxidative addition of 4-substituted iodobenzenes on Pd(0)-PMe3 complexes has been studied at the BP86 level of theory including dispersion correction and solvation effect, with tetrahydrofuran as solvent. The bisphosphine pathway was found to be barrierless, whereas the monophosphine route is hampered by the high dissociation energy of trimethylphosphine. The reaction free energy of this step shows linear correlation with the Hammett constants of the para substituents with the most electron withdrawing groups being the most exergonic. Tímea R. Kégl, László Kollár, and Tamás Kégl Copyright © 2015 Tímea R. Kégl et al. All rights reserved. Revisiting Oxidative Dehydrogenation of Ethane by W Doping into MoVMn Mixed Oxides at Low Temperature Tue, 27 Jan 2015 09:12:27 +0000 The catalytic performance of MoVMnW mixed oxides was investigated in the oxidative dehydrogenation of ethane at three different reaction temperatures (235, 255, and 275°C) using oxygen as an oxidant. The catalysts were characterized by using X-ray diffraction, temperature-programmed reduction, and scanning electron microscopy. The MoVMnW mixed oxide catalyst showed the 70–90% of ethylene selectivity at the reaction temperatures. However, a significant decrease in the selectivity of ethylene was observed by increasing the reaction temperature from 235°C to 275°C. Mohammed H. Al-Hazmi, Taiwo Odedairo, Adel S. Al-Dossari, and YongMan Choi Copyright © 2015 Mohammed H. Al-Hazmi et al. All rights reserved. Preparation of Zirconium Oxide Powder Using Zirconium Carboxylate Precursors Wed, 31 Dec 2014 00:10:16 +0000 Zirconia was prepared at low temperatures (<450°C) using single several source precursors based on zirconium carboxylates where the R groups were systematically varied. The combination of density functional theory (DFT) calculations and extensive characterization of the precursors (i.e., X-ray diffraction, thermal gravimetric analysis, infrared spectroscopy, and scanning electron microscopy) indicated that the carboxylic acid complexes may link the zirconium metal with a cis bidentate configuration. Periodic DFT calculations were performed to examine the interaction between monoclinic ZrO2 and propanoic acid. Dissociative adsorption takes place through the cis bidentate structure with an adsorption energy of −1.43 eV. Calculated vibrational frequencies using the optimized structure are in good agreement with experimental findings. Mohammed H. Al-Hazmi, YongMan Choi, and Allen W. Apblett Copyright © 2014 Mohammed H. Al-Hazmi et al. All rights reserved. Adsorption of Polyanion onto Large Alpha Alumina Beads with Variably Charged Surface Mon, 15 Dec 2014 08:57:29 +0000 Adsorption of strong polyelectrolyte, poly(styrenesulfonate), PSS, of different molecular weights onto large α-Al2O3 beads was systematically investigated as functions of pH and NaCl concentrations. The ultraviolet (UV) absorption spectra of PSS at different pH and salt concentrations confirmed that the structure of PSS is independent of pH. With the change of molecular weight from 70 kg/mol (PSS 70) to 1000 kg/mol (PSS 1000), adsorption amount of PSS increases and proton coadsorption on the surface of α-Al2O3 decreases at given pH and salt concentration. It suggests that higher molecular weight of PSS was less flat conformation than lower one. The adsorption density of PSS 70 and PSS 1000 decreases with decreasing salt concentrations, indicating that both electrostatic and nonelectrostatic interactions are involved. Experimental results of both PSS 70 and PSS 1000 adsorption isotherms onto α-Al2O3 at different pH and salt concentrations can be represented well by two-step adsorption model. The effects of molecular weight and salt concentration are explained by structure of adsorbed PSS onto α-Al2O3. The influence of added SDS on the isotherms is evaluated from the sequential adsorption. The SDS uptake onto α-Al2O3 in the presence of hemimicelles can prevent the adsorption of PSS at low concentration so that adsorption of PSS reduces with preadsorbed SDS. Tien Duc Pham, Motoyoshi Kobayashi, and Yasuhisa Adachi Copyright © 2014 Tien Duc Pham et al. All rights reserved. Evaluation of Density Matrix and Helmholtz Free Energy for Harmonic Oscillator Asymmetric Potential via Feynmans Approach Sun, 02 Nov 2014 08:03:57 +0000 We apply a Feynmans technique for calculation of a canonical density matrix of a single particle under harmonic oscillator asymmetric potential and solving the Bloch equation of the statistical mechanics system. The density matrix and kinetic energy per unit length can be directly evaluated from the solving solutions. From the evaluation, it was found that both of the density matrix and kinetic energy per unit length depended on the parameter of the value of asymmetric potential , the value of axes-shift potential , and temperature (T). Comparison of the Helmholtz free energy was derived by the Feynmans technique and the path-integral method. The results illustrated are slightly different. Piyarut Moonsri and Artit Hutem Copyright © 2014 Piyarut Moonsri and Artit Hutem. All rights reserved. Effect of Concentration on Isomerization of Rhodanine Derivatives of Merocyanine Dyes in Polar Solvents Wed, 27 Aug 2014 12:05:51 +0000 Rhodanine derivatives of merocyanine dyes with residues of 1,3,3-trimethyl-3H-indole and 3-ethylbenzothiazoline have been found to possess two molecular forms in diluted solutions of polar solvents such as dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidinone. The first molecular form was observed to prevail at low concentrations of the dyes, normally up to 10−5 M. The second one prevails at higher concentrations and is displayed through a new band in the electronic absorption spectrum, which is red-shifted with respect to the absorption band of the first form. No similar effect was found for these dyes by use of nonpolar solvents or upon alkyl-substitution of the molecules at nitrogen atom in the rhodanine moiety. We assign the above two forms to different molecular isomers and the analogous spectral changes were shown to take place by light or heat influence which correspond to a typical isomerization effect for the related merocyanine dyes. It is discussed that the isomer transformation is facilitated by the increased mobility of the proton bonded to the nitrogen atom of the rhodanine moiety in the polar environment and the increased amount of dye-dye collisions. O. P. Dimitriev, K. P. Grytsenko, O. I. Tolmachev, Yu. L. Slominskii, M. A. Kudinova, and S. Schrader Copyright © 2014 O. P. Dimitriev et al. All rights reserved. Ruthenium(III) Catalysis in Perborate Oxidation of 5-Oxoacids Sun, 24 Aug 2014 06:23:47 +0000 Ruthenium(III) catalyzes perborate oxidation of substituted 5-oxoacids in acidic solution. The catalyzed oxidation is first order with respect to the oxidant and catalyst. The rate of ruthenium(III) catalyzed oxidation displays the Michaelis-Menten kinetics on the reductant and is independent of [H+] of the medium. Hydrogen peroxide is the reactive species of perborate and the kinetic results reveal formation of ruthenium(III) peroxo species-5-oxoacid complex. Electron-releasing substituents accelerate the reaction rate and electron-withdrawing substituents retard it. The order of reactivity among the studied 5-oxoacids is p-methoxy   p-methyl > p-phenyl > −H > p-chloro > p-bromo > m-nitro. Activation parameters are evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data is proposed and discussed. A suitable rate law is derived based on the mechanism. S. Shree Devi, P. Krishnamoorthy, and B. Muthukumaran Copyright © 2014 S. Shree Devi et al. All rights reserved. Full Kinetics and a Mechanistic Investigation of the Green Protocol for Synthesis of β-Aminoketone in the Presence of Saccharose as a Catalyst by a One-Pot Three-Component Reaction Mon, 16 Jun 2014 00:00:00 +0000 For the first time, in a green protocol, an investigation of the kinetics and mechanism of the reaction between benzaldehyde 1, 4-chloroanilinne 2, and acetophenone 3 compounds in the presence of saccharose as a catalyst was performed for generating β-aminoketone. For determining the kinetic parameters, the reaction was monitored by using the UV/Vis spectrophotometry technique. The second order rate constant () was automatically calculated by the standard equations contained within the program. In the studied temperature range, the second order rate constant (, ) depended on reciprocal temperature that was in good consistent with Arrhenius and Eyring equations, respectively. These data provided the suitable plots for calculating the activation energy and parameters (Ea, , , and ) of the reaction. Furthermore, useful information was obtained from studying the effects of solvent, concentration, and catalyst on the reaction mechanism. The results showed that the first step of the reaction mechanism is a rate determining step (RDS). The obtained experimental data and also the steady state assumption confirmed the proposed mechanism. Sayyed Mostafa Habibi-Khorassani, Malek Taher Maghsoodlou, Mehdi Shahraki, Sadegh Talaie Far, and Mir Rasul Mousavi Copyright © 2014 Sayyed Mostafa Habibi-Khorassani et al. All rights reserved. A Development of Ethanol/Percarbonate Membraneless Fuel Cell Thu, 29 May 2014 08:34:05 +0000 The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications. M. Priya, A. Arun, M. Elumalai, S. Kiruthika, and B. Muthukumaran Copyright © 2014 M. Priya et al. All rights reserved. Equilibrium, Kinetics, and Thermodynamics of the Removal of Nickel(II) from Aqueous Solution Using Cow Hooves Mon, 19 May 2014 07:20:47 +0000 The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution. I. Osasona, O. O. Ajayi, and A. O. Adebayo Copyright © 2014 I. Osasona et al. All rights reserved. Plasma Formation during Acoustic Cavitation: Toward a New Paradigm for Sonochemistry Sun, 04 May 2014 11:19:23 +0000 The most recent spectroscopic studies of single bubble (SBSL) and multibubble (MBSL) sonoluminescence reveal that the origin of extreme intrabubble conditions is related to nonequilibrium plasma formed inside the collapsing bubbles. Analysis of the relative populations of OH(A2Σ+) vibrational states observed during MBSL in water saturated with noble gases shows that in the presence of argon at low ultrasonic frequency weakly excited plasma is formed. At high-frequency ultrasound the plasma inside the collapsing bubbles exhibits Treanor behavior typical for strong vibrational excitation. Plasma formation during SBSL was observed in concentrated H2SO4 preequilibrated with Ar. The light emission spectra exhibit the lines from excited Ar atoms and ionized oxygen . Formation of species is inconsistent with any thermal process. Furthermore, the SBSL spectra in H2SO4 show emission lines from Xe+, Kr+, and Ar+ in full agreement with plasma hypothesis. The photons and the “hot” particles generated by cavitation bubbles enable the excitation of nonvolatile species in solutions increasing their chemical reactivity. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble but then diffuse into the liquid phase and react with solution precursors to form a variety of products. Sergey I. Nikitenko Copyright © 2014 Sergey I. Nikitenko. All rights reserved. Sorption of Ammonium Ions onto Natural and Modified Egyptian Kaolinites: Kinetic and Equilibrium Studies Thu, 24 Apr 2014 00:00:00 +0000 Thermally activated, acid-activated, and acid-leached of thermally activated kaolinites were prepared from the Egyptian ore. The physical and chemical properties were studied using N2 sorption at −196°C, FTIR, SEM, and the total surface acidity. The sorption of ions on the investigated sorbents was controlled with the solution pH, sorbent dosage, and initial concentration of solution. Kinetic and equilibrium sorption at 30°C were employed. Four kinetic models were applied to the kinetic sorption data; pseudo-second-order, Elovich, and intraparticle diffusion models fitted well the kinetic data whereas pseudo-first-order model was less applicable. Elovich parameters refer to physical sorption type of on nonuniform sites and the intraparticle diffusion controls the sorption of by kaolinites to a small extent. The equilibrium sorption data followed Langmuir and D-R models; the negative value of indicates a spontaneous sorption and the mean sorption energy obtained shows also physical sorption. The sorption capacities of nonactivated and activated Egyptian kaolinites towards sorption (10.87–45.45 mg·g−1) were good sorbents as compared with those uptaken by other clays reported in the literature and proved to be more active besides being less expensive and highly available. Ola I. El-Shafey, Nady A. Fathy, and Thoria A. El-Nabarawy Copyright © 2014 Ola I. El-Shafey et al. All rights reserved. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry Tue, 18 Feb 2014 11:27:01 +0000 The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100%) have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant and relaxation time have been obtained by using least square fit method. By using these parameters , effective Kirkwood correlation factor , corrective Kirkwood correlation factor , Bruggeman factor , excess dielectric constant , and excess inverse relaxation time values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding. P. Jeevanandham, S. Kumar, P. Periyasamy, and A. C. Kumbharkhane Copyright © 2014 P. Jeevanandham et al. All rights reserved. Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling Mon, 10 Feb 2014 10:04:44 +0000 Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on , shows fractional–order dependence on , and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced. Jayachamarajapura Pranesh Shubha and Puttaswamy Copyright © 2014 Jayachamarajapura Pranesh Shubha and Puttaswamy. All rights reserved. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure Wed, 15 Jan 2014 17:06:56 +0000 Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers. Stephen Majoni and Jeanne M. Hossenlopp Copyright © 2014 Stephen Majoni and Jeanne M. Hossenlopp. All rights reserved. Synthesis and Study of Electrical Properties of SbTeI Thu, 09 Jan 2014 08:54:26 +0000 Needle shaped SbTeI crystals were obtained by solid state reaction. Electrical resistance was measured in the temperature range of 4 K to 550 K. SbTeI shows a metallic behavior from 4 K to 300 K, and at higher temperature (>300 K), it shows semiconducting behavior. Unlike SbSI, this material shows almost zero resistance around 550 K. It shows a piezoelectric behavior with a capacitance of 717 pF and its carrier density and nobilities are found to be 2.12 × 1016 cm−3 and 1.01 cm2/(V·s), respectively. Crystals of SbTeI are characterized by XRD, SEM, and Raman analysis. Electrical activation energy is found to be 0.52 eV. It is suggested that this material may be studied for its application as a superconductor with Tc higher than room temperature. Harish K. Dubey, L. P. Deshmukh, D. E. Kshirsagar, Madhuri Sharon, and Maheshwar Sharon Copyright © 2014 Harish K. Dubey et al. All rights reserved. Solvent Effect on Photoinitiator Reactivity in the Polymerization of 2-Hydroxyethyl Methacrylate Wed, 18 Dec 2013 12:51:01 +0000 Efficacy of photoinitiators such as riboflavin (RF), camphorquinone (CQ), and safranin T (ST) and triethanolamine as a coinitiator has been compared in carrying out the polymerization of 2-hydroxyethyl methacrylate (HEMA) in aqueous and organic solvents. HEMA solutions were polymerized in the presence of RF, CQ, and ST using a low intensity visible radiation source. HEMA was assayed by a UV spectrophotometric method during the initial stages of the reactions (i.e., ~5% change). A comparison of the efficacy of photoinitiators in causing HEMA polymerization showed that RF is more efficient than CQ and ST. The rate of polymerization is directly related to solvent dielectric constant and inversely related to the solvent viscosity. RF is the most efficient photoinitiator in the polymerization of HEMA and the highest rate of reaction occurs in aqueous solutions. A general scheme for the polymerization of HEMA in the presence of photoinitiators is presented. Iqbal Ahmad, Kefi Iqbal, Muhammad Ali Sheraz, Sofia Ahmed, Syed Abid Ali, Sadia Hafeez Kazi, Tania Mirza, Raheela Bano, and Mohammad Aminuddin Copyright © 2013 Iqbal Ahmad et al. All rights reserved. Second Harmonic Generation, Electrooptical Pockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation Mon, 16 Dec 2013 08:44:47 +0000 The static and dynamic electronic (hyper)polarizabilities of the equilibrium conformations of 2,2′-bithiophene (anti-gauche and syn-gauche) were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2), and density functional theory methods. The properties were evaluated for the second harmonic generation (SHG), and electrooptical Pockels effect (EOPE) nonlinear optical processes at the typical nm of the Nd:YAG laser. The anti-gauche form characterized by the dihedral angle of 137° (MP2/6-311G**) is the global minimum on the potential energy surface, whereas the syn-gauche rotamer ( = 48°, MP2/6-311G**) lies ca. 0.5 kcal/mol above the anti-gauche form. The structural properties of the gauche structures are rather similar to each other. The MP2 electron correlation effects are dramatic for the first-order hyperpolarizabilities of the 2,2′-bithiophenes, decreasing the HF values by ca. a factor of three. When passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more intense SHG and EOPE signals. Andrea Alparone Copyright © 2013 Andrea Alparone. All rights reserved. Demicellization of Polyethylene Oxide in Water Solution under Static Magnetic Field Exposure Studied by FTIR Spectroscopy Tue, 08 Oct 2013 12:05:17 +0000 FTIR spectroscopy was used to investigate the alterations of the vibration bands in the mid-infrared region of Polyethylene oxide in aqueous solution at 25 mg/mL concentration under exposure up to 4 h to a static magnetic field at 200 mT. FTIR spectroscopic analysis of PEO solution in the range 3500–1000 cm−1 evidenced the stretching vibrations of ether band, C–H symmetric-antisymmetric and bending vibrations of methylene groups, and the C–O–C stretching band. A significant decrease in intensity of symmetric and asymmetric stretching CH2 vibration bands occurred after 2 h and 4 h of exposure, followed by a significant decrease in intensity of scissoring bending in plane CH2 vibration around 1465 cm−1. Finally, the C–O–C stretching band around 1080 cm−1 increased in intensity after 4 h of exposure. This result can be attributed to the increase of formation of the intermolecular hydrogen bonding that occurred in PEO aqueous solution after SMF exposure, due to the reorientation of PEO chain after exposure to SMF. In this scenario, the observed decrease in intensity of CH2 vibration bands can be understood as well considering that the reorientation of PEO chain under the applied SMF induces PEO demicellization. Emanuele Calabrò and Salvatore Magazù Copyright © 2013 Emanuele Calabrò and Salvatore Magazù. All rights reserved. Volumetric, Viscometric and Excess Properties of Binary Mixtures of 1-Iodobutane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 303.15 to 313.15 K Tue, 20 Aug 2013 09:19:21 +0000 Densities and viscosities have been determined for binary mixtures of 1-iodobutane with benzene, toluene, o-xylene, m-xylene, p-xylene, and mesitylene at 303.15, 308.15, and 313.15 K for the entire composition range at atmospheric pressure. The excess molar volumes, , deviations in viscosity, Δη, and excess Gibbs’ free energy of activation flow, Δ have been calculated from the experimental values. The experimental data were fitted to Redlich-Kister polynomial equation. The variations of these parameters with composition of the mixtures and temperature have been discussed in terms of molecular interactions occurring in these mixtures. Further, the viscosities of these binary mixtures were calculated theoretically from their corresponding pure component data by using empirical relations like Bingham, Arrhenius and Eyring, Kendall and Munroe, Hind, Katti and Chaudhari, Grunberg and Nissan, and Tamura and Kurata. Comparison of various interaction parameters has been expressed to explain the intermolecular interactions between iodobutane and selected hydrocarbons. Sangita Sharma, Khushbu Thakkar, Paras Patel, and Madhuresh Makavana Copyright © 2013 Sangita Sharma et al. All rights reserved. The Lattice Compatibility Theory LCT: Physical and Chemical Arguments from the Growth Behavior of Doped Compounds in terms of Bandgap Distortion and Magnetic Effects Tue, 09 Jul 2013 10:01:43 +0000 Physical and chemical arguments for the recently discussed materials-related Lattice Compatibility Theory are presented. The discussed arguments are based on some differences of Mn ions incorporation kinetics inside some compounds. These differences have been evaluated and quantified in terms of alteration of bandgap edges, magnetic patterns, and Faraday effect. K. Boubaker Copyright © 2013 K. Boubaker. All rights reserved. Comparative Biosorption Studies of Hexavalent Chromium Ion onto Raw and Modified Palm Branches Sun, 07 Jul 2013 15:03:14 +0000 The waste of palm branches (PB) was tested for its ability to remove chromium (VI) from aqueous solution by batch and column experiments. Palm branches chemically modified with an oxidizing agent (sulphuric acid) then coated with chitosan and surfactant (hexadecyl trimethyl ammonium bromide surfactant, HDTMA), respectively, were carried out to improve the removal performance of PB. The results of their Cr (VI) removal performances are pH dependent. The adsorption data could be well interpreted by the Langmuir, Freundlich, and Flory-Huggins isotherm models. The maximum adsorption capacity obtained from the Langmuir model for the chitosan coated oxidized palm branches is 55 mg/mg. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved. The biosorbents were successfully regenerated using 1 M HCL solution. Mona A. Shouman, Nady A. Fathy, Soheir A. Khedr, and Amina A. Attia Copyright © 2013 Mona A. Shouman et al. All rights reserved. Calculated Entropies for n-Heptane, 2-Methylhexane, 2,3-Dimethylpentane, and Radicals from the Loss of H Atoms Tue, 18 Jun 2013 13:40:21 +0000 Entropy data are reported using different calculation methods for internal rotors on n-heptane, 2-methylhexane, and 2,3-dimethylpentane and on the different radical sites of each species corresponding to the loss of a hydrogen atom for temperatures between 298 and 1500 K. Structures, moments of inertia, vibration frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Comparisons with experimental literature data suggest limitations inuse of the rigid-rotor harmonic-oscillator (HO) approximation and advantages to the use of internal rotation contributions for entropy relative to torsion frequencies. The comparisons suggest the need to include contributions from all internal rotors where the barriers are at or below those of the above molecules. Calculation of entropy from the use of internal rotor contributions provides acceptable approximations to available literature values. Entropy values for radicals corresponding to carbon sites on these hydrocarbons are presented. Jason M. Hudzik and Joseph W. Bozzelli Copyright © 2013 Jason M. Hudzik and Joseph W. Bozzelli. All rights reserved. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach Mon, 10 Jun 2013 17:47:20 +0000 Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN), hypoxanthine (HXAN), caffeine (CAF), theophylline (TPL), and theobromine (TBR), have been studied with ceric ammonium nitrate (CAN) using poly ethylene glycols (PEG) as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures) are enhanced in presence PEGs (PEG-200, -300, -400, -600). An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2)n–O–NH4Ce(NO3)4(CH3CN)] (PEG bound CAN species), is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model. S. Shylaja, K. C. Rajanna, K. Ramesh, K. Rajendar Reddy, and P. Giridhar Reddy Copyright © 2013 S. Shylaja et al. All rights reserved. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements Wed, 29 May 2013 16:40:22 +0000 The behavior of bovine serum albumin (BSA) in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (). This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes. Martin Alberto Masuelli Copyright © 2013 Martin Alberto Masuelli. All rights reserved. Calculation of Thermal Pressure Coefficient of R11, R13, R14, R22, R23, R32, R41, and R113 Refrigerants by Data Tue, 28 May 2013 16:37:09 +0000 For thermodynamic performance to be optimized particular attention must be paid to the fluid’s thermal pressure coefficients and thermodynamic properties. A new analytical expression based on the statistical mechanics is derived for R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants, using the intermolecular forces theory. In this paper, temperature dependency of the parameters of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants to calculate thermal pressure coefficients in the form of first order has been developed to second and third orders and their temperature derivatives of new parameters are used to calculate thermal pressure coefficients. These problems have led us to try to establish a function for the accurate calculation of the thermal pressure coefficients of R11, R13, R14, R22, R23, R32, R41, and R113 refrigerants based on statistical-mechanics theory for different refrigerants. Vahid Moeini and Mahin Farzad Copyright © 2013 Vahid Moeini and Mahin Farzad. All rights reserved. Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies: A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures Tue, 16 Apr 2013 11:29:03 +0000 Research efforts to improve our understanding of electronic polymers are developing fast because of their promising advantages over silicon in photovoltaic solar cells. A major challenge in the development of polymer photovoltaic devices is the viable fabrication strategies of stable bulk heterojunction architecture that will retain functionality during the expected lifetime of the device. Block copolymer self-assembly strategies have attracted particular attention as a scalable means toward thermodynamically stable microstructures that combine the ideal geometrical characteristics of a bulk heterojunction with the fortuitous combination of properties of the constituent blocks. Two primary routes that have been proposed in the literature involve the coassembly of block copolymers in which one domain is a hole conductor with the electron-conducting filler (such as fullerene derivatives) or the self-assembly of block copolymers in which the respective blocks function as hole and electron conductor. Either way has proven difficult because of the combination of synthetic challenges as well as the missing understanding of the complex governing parameters that control structure formation in semiconducting block copolymer blends. This paper summarizes important findings relating to structure formation of block copolymer and block copolymer/nanoparticle blend assembly that should provide a foundation for the future design of block copolymer-based photovoltaic systems. A. Benmouna, R. Benmouna, M. R. Bockstaller, and I. F. Hakem Copyright © 2013 A. Benmouna et al. All rights reserved. Theoretical Study on the Static (Hyper)Polarizabilities of α-t-Bu-ω-CN-Poly(methylphenyl)silane Sun, 31 Mar 2013 16:11:30 +0000 The static linear and nonlinear optical properties of the σ-conjugated polymer α-t-Bu-ω-CN-poly(methylphenyl)silane (PMS) are studied at the Coupled-Perturbed Hartree-Fock (CPHF) level with 6-31+G(d) basis set. The calculated results reveal that the static first hyperpolarizabilities of this system increase with the main chain length and have a good agreement with experiments. The (hyper)polarizabilities per unit cell have been extrapolated to infinite chain limit and a comparison is made to those of polysilane and polyacetylene (PA). Besides, other structural properties depending on the σ-conjugated Si–Si skeleton length are investigated as well. Electron correlation effect is estimated and it turns out that the MP2 static first hyperpolarizability is about times larger than the corresponding CPHF value for the polymer with . Jing Li, Liang Peng, and Feng Long Gu Copyright © 2013 Jing Li et al. All rights reserved.