About this Journal Submit a Manuscript Table of Contents
Advances in Power Electronics
Volume 2011 (2011), Article ID 970364, 8 pages
http://dx.doi.org/10.1155/2011/970364
Research Article

A New Sensorless MRAS Based on Active Power Calculations for Rotor Position Estimation of a DFIG

Department of Electrical and Computer Engineering, IST, Technical University of Lisbon (TULisbon), 1049-001 Lisbon, Portugal

Received 29 November 2010; Revised 3 March 2011; Accepted 25 March 2011

Academic Editor: Henry S. H. Chung

Copyright © 2011 Gil Domingos Marques and Duarte Mesquita e Sousa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Pena, J. C. Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation,” IEE Proceedings: Electric Power Applications, vol. 143, pp. 231–241, 1996.
  2. R. Datta and V. T. Ranganathan, “A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 786–793, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Bogalecka, “Power control of a double fed induction generator without speed or position sensor,” in Proceedings of the 5th European Conference on Power Electronics and Applications, vol. 8, chapter 50, pp. 224–228, September 1993.
  4. E. Bogalecka and Z. Krzeminski, “Sensorless control of double fed machine for wind power generators,” in Proceedings of the 10th International Conference on Power Electronics and Motion Control (EPE-PEMC '02), Dubrovnik, Croatia, 2002.
  5. Z. Krzeminski, A. Popenda, M. Melcer, and P. Ladach, “Sensorless control system of double fed induction machine with predictive current controller,” in Proceedings of the European Conference on Power Electronics and Applications (EPE '01), Graz, Austria, 2001.
  6. L. Xu and W. Cheng, “Torque and reactive power control of a doubly fed induction machine by position sensorless scheme,” IEEE Transactions on Industry Applications, vol. 31, no. 3, pp. 636–642, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Morel, H. Godfroid, A. Mirzaian, and J. M. Kaufmann, “Double-fed induction machine: converter optimization and field oriented control without position sensor,” IEE Proceedings: Electric Power Applications, vol. 145, no. 4, pp. 360–368, 1998.
  8. B. Hopfensperger, D. J. Atkinson, and R. A. Lakin, “Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder,” IEE Proceedings: Electric Power Applications, vol. 147, no. 4, pp. 241–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Cárdenas, R. Peña, G. Asher, J. Clare, and J. Cartes, “MRAS observer for doubly fed induction machines,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 467–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Cárdenas, R. Peña, J. Proboste, G. Asher, and J. Clare, “Rotor current based MRAS observer for doubly-fed induction machines,” Electronics Letters, vol. 40, no. 12, pp. 769–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Cárdenas, R. Peña, J. Proboste, G. Asher, and J. Clare, “Sensorless control of a doubly-fed induction generator for stand alone operation,” in Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference, pp. 3378–3383, Aachen, Germany, 2004.
  12. R. Peña, R. Cárdenas, J. Proboste, G. Asher, and J. Clare, “Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 330–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Shen, B. Mwinyiwiwa, Y. Zhang, and B. T. Ooi, “Sensorless maximum power point tracking of wind by DFIG using rotor position phase lock loop (PLL),” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 942–951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Mwinyiwiwa, Y. Zhang, B. Shen, and B. T. Ooi, “Rotor position phase-locked loop for decoupled P-Q control of DFIG for wind power generation,” IEEE Transactions on Energy Conversion, vol. 24, no. 3, pp. 758–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. D. Marques, V. Fernão Pires, S. Sousa, and D. M. Sousa, “Evaluation of a DFIG rotor position-sensorless detector based on a hysteresis controller,” in Proceedings of the PowerEng Conference, Costa da Caparica, Lisbon, 2009.
  16. G. D. Marques, V. F. Pires, S. Sousa, and D. M. Sousa, “A DFIG sensorless rotor position detector based on a hysteresis controller,” IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 9–17, 2011.
  17. J. F. Silva and S. F. Pinto, “Control methods for switching power converters,” in Power Electronics Handbook, M. H. Rashid, Ed., chapter 34, pp. 935–998, Elsevier, Academic Press, 2nd edition, 2006.