About this Journal Submit a Manuscript Table of Contents
Advances in Power Electronics
Volume 2012 (2012), Article ID 676010, 12 pages
http://dx.doi.org/10.1155/2012/676010
Research Article

Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

1Philips Electronics NA, Chicago, IL 60656, USA
2Control System Division, Eaton Technologies, Pune 411014, India
3School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99163, USA
4ABB Inc., Raleigh, NC 27606, USA

Received 31 May 2012; Revised 1 October 2012; Accepted 17 October 2012

Academic Editor: Don Mahinda Vilathgamuwa

Copyright © 2012 Arindam Chakraborty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IEEE power engineering society. FACTS application task force, FACTS applications, IEEE Publication 96-TP116-0.
  2. N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE press, New York, NY, USA, 2000.
  3. J. J. Paserba, “How FACTS controllers benefit AC transmission systems,” in Proceedings of the IEEE Power Engineering Society General Meeting, pp. 1257–1262, June 2004. View at Scopus
  4. K. K. Sen, “STATCOM-STATIC synchronous compensator: theory, modeling and applications,” IEEE Transactions on Power Delivery, vol. 2, pp. 237–243, 1999.
  5. C. K. Lee, J. S. K. Leung, S. Y. R. Hui, and H. S.-H. Chung, “Circuit-level comparison of STATCOM technologies,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 1084–1092, 2003. View at Publisher · View at Google Scholar
  6. D. Soto and T. C. Green, “A comparison of high-power converter topologies for the implementation of FACTS controllers,” IEEE Transactions on Industrial Electronics, vol. 49, no. 5, pp. 1072–1080, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. H. Norouzi and A. M. Sharaf, “Two control schemes to enhance the dynamic performance of the STATCOM and SSSC,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 435–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. W. Lehn and M. R. Iravani, “Experimental evaluation of STATCOM closed loop dynamic,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1378–1384, 1998. View at Scopus
  9. S. Musunuri and G. Dehnavi, “Comparison of STAT COM, SVC, TCSC, and SSSC performance in steady state voltage stability improvement,” in Proceedings of the North American Power Symposium (NAPS '10), Arlington, Va, USA, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Rao, M. L. Crow, and Z. Yang, “STATCOM control for power system voltage control applications,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1311–1317, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Blažič and I. Papič, “STATCOM control for operation with unbalanced voltages,” in Proceedings of the 12th International Power Electronics and Motion Control Conference (EPE-PEMC '06), pp. 1454–1459, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Sharmeela, G. Uma, and M. R. Mohan, “Multi-level distribution STATCOM for voltage sag and swell reduction,” in Proceedings of the IEEE Power Engineering Society General Meeting, pp. 1303–1307, San Francisco, Calif, USA, June 2005. View at Scopus
  13. H. Yonezawa, T. Shimato, M. Tsukada et al., et al., “Study of a STATCOM application for voltage stability evaluated by dynamic PV curves and time simulations,” in Proceedings of the EEE Power Engineering Society Winter Meeting, vol. 2, pp. 1471–1476, 2000.
  14. R. J. Nelson, J. Bian, D. G. Ramey, T. A. Lemak, T. R. Rietman, and J. E. Hill, “Transient stability enhancement with FACTS controllers,” in Proceedings of the 6th International Conference on AC and DC Power Transmission, pp. 269–274, May 1996. View at Scopus
  15. S. Panda and R. N. Patel, “Improving power system transient stability with an off-centre location of shunt FACTS devices,” Journal of Electrical Engineering, vol. 57, no. 6, pp. 365–368, 2006. View at Scopus
  16. A. H. Norouzi and A. M. Sharaf, “A novel control scheme for the STATCOM stability enhancement,” in Proceedings of the IEEE PES Transmission and Distribution Conference, pp. 24–29, September 2003. View at Scopus
  17. P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, “Energy storage systems for advances power applications,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1744–1756, 2001. View at Scopus
  18. S. Eckroad, “FACTS with energy storage: conceptual design study,” EPRI Report TR-111093, EPRI, Palo Alto, Calif, USA, 1999.
  19. A. Arulampalam, J. B. Ekanayake, and N. Jenkins, “Application study of a STATCOM with energy storage,” IEE Proceedings, vol. 150, no. 3, pp. 373–384, 2003. View at Scopus
  20. A. Arsoy, Y. Liu, P. F. Ribeiro, and W. Xu, “The impact of energy storage on the dynamic performance of a static synchronous compensator,” in Proceedings of the 3rd International Power Electronics and Motion Control Conference (IPEMC '00), vol. 2, pp. 519–5124.
  21. Z. Yang, C. Shen, L. Zhang, M. L. Crow, and S. Atcitty, “Integration of a StatCom and battery energy storage,” IEEE Transactions on Power Systems, vol. 16, no. 2, pp. 254–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Arsoy, Y. Liu, S. Chen, Z. Yang, M. L. Crow, and P. F. Ribeiro, “Dynamic performance of a static synchronous compensator with energy storage,” in Proceedings of the IEEE Power Engineering Society Winter Meeting, pp. 605–610, February 2001. View at Scopus
  23. L. Zhang, C. Shen, M. L. Crow, L. Dong, S. Pekarek, and S. Atcitty, “Performance indices for the dynamic performance of FACTS and FACTS with energy storage,” Electric Power Components and Systems, vol. 33, no. 3, pp. 299–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Cheng and M. L. Crow, “A diode-clamped multi-level inverter for the StatCom/BESS,” in Proceedings of the IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 470–475, January 2002. View at Scopus
  25. R. Kuiava, R. A. Ramos, and N. G. Bretas, “Control design of a STATCOM with energy storage system for stability and power quality improvements,” in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '09), pp. 1–6, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Qian, M. L. Crow, and S. Atcitty, “A multi-processor control system architecture for a cascaded StatCom with energy storage,” in Proceedings of the 19th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '04), pp. 1757–1763, February 2004. View at Scopus
  27. A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, and D. Morton, “Challenges in integrating distributed energy storage systems into future smart grid,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '08), pp. 1627–1632, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Manel, “Power electronic system for grid integration of renewable energy source: a survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002–1004, 2006.
  29. S. M. Muyeen, M. H. Ali, R. Takahashi, T. Murata, and J. Tamura, “Stabilization of wind farms connected with multi machine power system by using STATCOM,” in Proceedings of the IEEE Lausanne Power Tech, pp. 299–304, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. S. Hook, Y. Liu, and S. Atcitty, “Mitigation of the wind generation integration related power quality issues by energy storage,” EPQU Journal, vol. 12, no. 2, 2006.
  31. C. Han, A. Q. Huang, M. E. Baran et al., “STATCOM impact study on the integration of a large wind farm into a weak loop power system,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Wang and C. T. Hsiung, “Dynamic stability improvement of an integrated grid-connected offshore wind farm and marine-current farm using a STATCOM,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 690–698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Hossain and H. R. Pota, “Improved low-voltage-ride-through capability of fixed speed wind turbines using decentralized control of STATCOM with energy storage system,” IET Generation, Transmission & Distribution, vol. 6, no. 8, pp. 719–730, 2012.
  34. K. Malarvizhi and K. Baskaran, “Reactive power compensation and stability analysis of fixed speed wind generators using STATCOM integrated with energy storage devices,” International Journal of Sustainable Energy, vol. 30, no. 6, pp. 367–375, 2011.
  35. B. Gudimetla, S. Teleke, and J. Castaneda, “Application of energy storage and STATCOM for grid quality issues,” in Proceedings of the IEEE Power and Energy Society General Meeting, pp. 1–8, Detroit, Mish, USA, 2011. View at Publisher · View at Google Scholar
  36. B. Wu, R. Dougal, and R. E. White, “Resistive companion battery modeling for electric circuit simulations,” Journal of Power Sources, vol. 93, no. 1-2, pp. 186–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. SIMULINK/MATLAB, http://www.mathworks.com.