About this Journal Submit a Manuscript Table of Contents
Advances in Power Electronics
Volume 2013 (2013), Article ID 216870, 8 pages
http://dx.doi.org/10.1155/2013/216870
Review Article

A Review on the Faults of Electric Machines Used in Electric Ships

Electromechanical Energy Conversion Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504 Rio, Patras, Greece

Received 25 October 2012; Revised 6 February 2013; Accepted 6 February 2013

Academic Editor: George Antonopoulos

Copyright © 2013 Dionysios V. Spyropoulos and Epaminondas D. Mitronikas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. McCoy, “Trends in ship electric propulsion,” in Proceedings of the IEEE Power Engineering Society Summer Meeting, pp. 343–346, July 2002. View at Scopus
  2. The Frontrunner, “A new era in ship propulsion: The first large size (154K) LNG carrier with electric propulsion is now in operation,” ABB Marine, March 2007.
  3. Rolls Royce, “New electric hybrid propulsion system,” http://www.rolls-royce.com/Images/hsg_brochure_tcm92-26884.pdf.
  4. VEM-GROUP, http://www.vem-group.com/fileadmin/content/pdf/Produkte_Komponente/Mittel_und_Hochspannung/Schiffbau/schiffbau_0908_e.pdf.
  5. C. G. Hodge and D. J. Mattick, “The electric warship,” Transactions of Institute of Marine Engineers, vol. 108, pp. 109–125.
  6. E. D. Mitronikas and E. C. Tatakis, “Migrating the experience of industrial systems to electric ships: propulsion motors and fault detection,” in Proceedings of the 1st Marinlive International Workshop on Electric Machines and Power Converters, 2012.
  7. S. A. Gertsos, J. M. Prousalidis, and C. A. Frangopoulos, “Electric Propulsion: from Infancy to adolensense,” in Proceedings of the 8th International Marine Design Conference, Athens, Greece, May 2003.
  8. K. P. Logan, “Intelligent diagnostic requirements of future all-electric ship integrated power system,” IEEE Transactions on Industry Applications, vol. 43, no. 1, pp. 139–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors—a review,” IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. H. Benbouzid and G. B. Kliman, “What stator current processing-based technique to use for induction motor rotor faults diagnosis?” IEEE Transactions on Energy Conversion, vol. 18, no. 2, pp. 238–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Zhang, Y. Du, T. G. Habetler, and B. Lu, “A survey of condition monitoring and protection methods for medium-voltage induction motors,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 34–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. H. Benbouzid, “A review of induction motors signature analysis as a medium for faults detection,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 984–993, 2000. View at Scopus
  13. A. M. Trzynadlowski and E. Ritchie, “Comparative investigation of diagnostic media for induction motors: a case of rotor cage faults,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1092–1099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. G. S. Khalaf and A. F. Mohamed Haider, “Diagnosis and fault tolerant control of the Induction motors techniques a review,” Australian Journal of Basic and Applied Sciences, vol. 4, no. 2, pp. 227–246, 2010.
  15. S. H. Kia, H. Henao, and G. A. Capolino, “Digital signal processing for induction machines diagnosis—a review,” in Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON '07), pp. 1155–1162, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. O. V. Thorsen and M. Dalva, “Survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries,” IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1186–1196, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Tavner, L. Ran, J. Penman, and H. Sedding, Condition Monitoring of Rotating Electrical Machines, IET Power and Energy Series, IET, 2008.
  18. A. Stavrou, H. Sedding, and J. Penman, “Current monitoring for detecting inter-turn short circuits in induction motors,” in Proceedings of the IEEE International Electric Machines and Drives Conference, pp. 345–347, 1999.
  19. S. M. A. Cruz and A. J. Marques Cardoso, “Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended park's vector approach,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1227–1233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Jaksch and P. Fuchs, “Using space transformation for exact diagnostic of induction motor stator faults,” in Proceedings of the International Symposium on Diagnostics of Electric Machines, Power Electronics, and Drives (SDEMPED '05), Vienna, Austria, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. V. Spyropoulos and E. D. Mitronikas, “Induction motor stator fault diagnosis technique using Park vector approach and complex wavelets,” in Proceedings of the 20th International Conference on Electrical Machines (ICEM '12), pp. 1730–1734, 2012.
  22. I. P. Georgakopoulos, Development of fault diagnosis methods in controlled motor systems composed by electronic power converters and asynchronous machine [Ph.D. thesis], University of Patras, Patras, Greece, 2010.
  23. J. Milimonfared, H. M. Kelk, S. Nandi, A. D. Minassians, and H. A. Toliyat, “A novel approach for broken-rotor-bar detection in cage induction motors,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1000–1006, 1999. View at Scopus
  24. I. P. Tsoumas, G. Georgoulas, E. D. Mitronikas, and A. N. Safacas, “Asynchronous machine rotor fault diagnosis technique using complex wavelets,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 444–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Henao, H. Razik, and G. Capolino, “Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults,” IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 801–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Zhou, T. G. Habetler, and R. G. Harley, “Bearing condition monitoring methods for electric machines: a general review,” in Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED '07), pp. 3–6, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Devaney and L. Eren, “Detecting motor bearing faults: monitoring an induction motor's current and detecting bearing failure,” IEEE Instrumentation and Measurement Magazine, vol. 7, no. 4, pp. 30–50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, “Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4727–4739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Casadei, F. Filippetti, C. Rossi, and A. Stefani, “Magnets faults characterization for permanent magnet synchronous motors,” in Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED '09), September 2009. View at Publisher · View at Google Scholar · View at Scopus