About this Journal Submit a Manuscript Table of Contents
Advances in Power Electronics
Volume 2013 (2013), Article ID 591680, 10 pages
http://dx.doi.org/10.1155/2013/591680
Review Article

Harmonic Mitigation Techniques Applied to Power Distribution Networks

Faculty of Engineering, Sohar University, P.O. Box 44, 311 Sohar, Oman

Received 30 July 2012; Revised 20 January 2013; Accepted 21 January 2013

Academic Editor: Hadi Y. Kanaan

Copyright © 2013 Hussein A. Kazem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mansoor, W. M. Grady, A. H. Chowdhury, and M. J. Samotyi, “An investigation of harmonics attenuation and diversity among distributed single-phase power electronic loads,” IEEE Transactions on Power Delivery, vol. 10, no. 1, pp. 467–473, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Mansoor, W. M. Grady, R. S. Thallam, M. T. Doyle, S. D. Krein, and M. J. Samotyj, “Effect of supply voltage harmonics on the input current of single-phase diode bridge rectifier loads,” IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1416–1422, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Carpinelli, F. Iacovone, P. Varilone, and P. Verde, “Single phase voltage source converters: analytical modelling for harmonic analysis in continuous and discontinuous current conditions,” International Journal of Power and Energy Systems, vol. 23, no. 1, pp. 37–48, 2003. View at Scopus
  4. E. F. El-Saadany and M. M. A. Salama, “Reduction of the net harmonic current produced by single-phase non-linear loads due to attenuation and diversity effects,” International Journal of Electrical Power and Energy Systems, vol. 20, no. 4, pp. 259–268, 1998. View at Scopus
  5. T. Key and J. S. Lai, “Analysis of harmonic mitigation methods for building wiring systems,” IEEE Transactions on Power Systems, vol. 13, no. 3, pp. 890–897, 1998. View at Scopus
  6. M. H. Rashid and A. I. Maswood, “A novel method of harmonic assessment generated by three-phase AC-DC converters under unbalanced supply conditions,” IEEE Transactions on Industry Applications, vol. 24, no. 4, pp. 590–597, 1988. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Owen, M. F. McGranghan, and J. R. Vivirito, “Distribution system harmonics: controls for large power converters,” IEEE Transactions on Power Apparatus and Systems, vol. 101, no. 3, pp. 644–652, 1982. View at Scopus
  8. T. Hoevenaars, K. LeDoux, and M. Colosino, “Interpreting IEEE STD 519 and meeting its harmonic limits in VFD applications,” in Proceedings of the 50th Annual Technical Conference of the Petroleum and Chemical Industry Committee, pp. 145–150, Houston, Tex, USA, September 2003. View at Scopus
  9. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641–660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. “Investigation into execution of harmonic guidelines for household and office electric applications,” Japanese IEE of Japan SC77A Domestic Committee Report, 2002.
  11. R. L. Smith and R. P. Stratford, “Power system harmonics effects from adjustable-speed drives,” IEEE Transactions on Industry Applications, vol. 20, no. 4, pp. 973–977, 1984. View at Scopus
  12. J. C. Das, Power System Analysis, Short-Circuit Load Flow and Harmonics, Marcel Dekker, New York, NY, USA, 2002.
  13. D. Alexa, A. Sîrbu, and D. M. Dobrea, “An analysis of three-phase rectifiers with near-sinusoidal input currents,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 884–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. B. Makram, E. V. Subramaniam, A. A. Girgis, and R. Catoe, “Harmonic filter design using actual recorded data,” IEEE Transactions on Industry Applications, vol. 29, no. 6, pp. 1176–1183, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. T. S. Key and J. S. Lai, “Comparison of standards and power supply design options for limiting harmonic distortion in power systems,” IEEE Transactions on Industry Applications, vol. 29, no. 4, pp. 688–695, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Prasad, P. D. Ziogas, and S. Manias, “A novel passive waveshaping method for single-phase diode rectifiers,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 521–530, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yanchao and F. Wang, “Single-phase diode rectifier with novel passive filter,” IEE Proceeding Circuits Devices Systems, vol. 145, no. 4, pp. 254–259, 1998.
  18. K. Hirachi, T. Iwade, and K. Shibayama, “Improvement of control strategy on a step-down type high power factor converter,” National Conversion Record of Industrial Electronic Engineering Japan, pp. 4.70–4.71, 1995.
  19. R. Ltoh, K. Lshizaka, H. Oishi, and H. Okada, “Single-phase buck rectifier employing voltage reversal circuit for sinusoidal input current waveshaping,” IEE Proceedings: Electric Power Applications, vol. 146, no. 6, pp. 707–712, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C. A. Canesin and I. Barbi, “A novel single-phase ZCS-PWM high-power-factor boost rectifier,” IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 629–635, 1999. View at Scopus
  21. P. J. A. Ling and C. J. Eldridge, “Designing modern electrical systems with transformers that inherently reduce harmonic distortion in a PC-rich environment,” in Proceedings of the Power Quality Conference, pp. 166–178, 1994.
  22. J. C. Read, “The calculation of rectifier and inverter performance characteristics,” Journal of the Institute of Electrical Engineers, vol. 92, no. 2, pp. 495–509, 1945.
  23. E. J. Cham and T. R. Specht, “The ANSI 49 rectifier with phase shift,” IEEE Transactions on Industry Applications, vol. 20, no. 3, pp. 615–624, 1984. View at Scopus
  24. R. Hammond, L. Johnson, A. Shimp, and D. Harder, “Magnetic solutions to line current harmonic reduction,” in Proceedings of the Europe by International Power Conversion Conference (PCIM '94), pp. 354–364, San Diego, Calif, USA, 1994.
  25. S. Kim, P. N. Enjeti, P. Packebush, and I. J. Pitel, “A new approach to improve power factor and reduce harmonics in a three-phase diode rectifier type utility interface,” IEEE Transactions on Industry Applications, vol. 30, no. 6, pp. 1557–1564, 1994. View at Scopus
  26. S. Choi, P. N. Enjeti, and I. J. Pitel, “Polyphase transformer arrangements with reduced kVA capacities for harmonic current reduction in rectifier-type utility interface,” IEEE Transactions on Power Electronics, vol. 11, no. 5, pp. 680–690, 1996. View at Scopus
  27. B. M. Bird, J. F. Marsh, and P. R. McLellan, “Harmonic reduction in multiplex converters by triple-frequency current injection,” Proceedings of the Institution of Electrical Engineers, vol. 116, no. 10, pp. 1730–1734, 1969.
  28. Y. S. Tzeny, “Harmonic analysis of parallel-connected 12-pulse uncontrolled rectifier without an interphase transformer,” IEE Proceeding Electrical Power Applications, vol. 145, no. 3, pp. 253–260, 1998. View at Publisher · View at Google Scholar
  29. M. Hink Karl, “18 -Pulse Drives and Voltage Unbalance,” http://mtecorp.com/18pulse.html.
  30. T. H. Chen and M. Y. Huang, “Network modelling of 24-pulse rectifier transformers for rigorous simulation of rail transit power systems,” Electric Power Systems Research, vol. 50, no. 1, pp. 23–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. E. F. El-Saadany, R. Elshatshat, M. M. A. Salama, M. Kazerani, and A. Y. Chikhani, “Reactance one-port compensator and modular active filter for voltage and current harmonic reduction in nonlinear distribution systems: a comparative study,” Electric Power Systems Research, vol. 52, no. 3, pp. 197–209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. R. Johnson, “Proper use of active harmonic filters to benefit pulp and paper mills,” IEEE Transactions on Industry Applications, vol. 38, no. 3, pp. 719–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Li, Q. Chen, Z. Jia, and J. Ke, “A novel active power filter with fundamental magnetic flux compensation,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 799–805, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. W. M. Grady, M. J. Samotyi, and A. H. Noyola, “Survey of active line conditioning methodologies,” IEEE Transactions on Power Delivery, vol. 5, no. 3, pp. 1536–1541, 1990.
  35. M. Takeda, K. Ikeda, and Y. Tominaga, “Harmonic current compensation with active filter,” in Proceedings of the IEEE/IAS Annual Meeting, pp. 808–815, 1987.
  36. Z. Du, L. M. Tolbert, and J. N. Chiasson, “Active harmonic elimination for multilevel converters,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 459–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Bhattacharya, T. M. Frank, D. M. Divan, and B. Banerjee, “Active filter system implementation,” IEEE Industry Applications Magazine, vol. 4, no. 5, pp. 47–63, 1998. View at Scopus
  38. I. Takahashi, S. G. Li, and Y. Omura, “Low price and high power active filter,” in Proceedings of the IEEE/IAS Annual Meeting, pp. 95–98, 1991.
  39. G. W. Chang and T. C. Shee, “A novel reference compensation current strategy for shunt active power filter control,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1751–1758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Akagi, “Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems,” IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 354–362, 1997. View at Scopus
  41. A. Cavallini and G. C. Montanari, “Compensation strategies for shunt active-filter control,” IEEE Transactions on Power Electronics, vol. 9, no. 6, pp. 587–593, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Akagi, H. Fujita, and K. Wada, “A shunt active filter based on voltage detection for harmonic termination of a radial power distribution line,” IEEE Transactions on Industry Applications, vol. 35, no. 3, pp. 638–645, 1999. View at Scopus
  43. H. Fujita and H. Akagi, “A practical approach to harmonic compensation in power systems—series connection of passive and active filters,” IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1020–1025, 1991. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Z. Peng, H. Akagi, and A. Nabae, “A new approach to harmonic compensation in power systems—a combined system of shunt passive and series active filters,” IEEE Transactions on Industry Applications, vol. 26, no. 6, pp. 983–990, 1990. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Akagi, “Active harmonic filters,” Proceedings of the IEEE, vol. 93, no. 12, pp. 2128–2141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Basic, V. S. Ramsden, and P. K. Muttik, “Hybrid filter control system with adaptive filters for selective elimination of harmonics and interharmonics,” IEE Proceedings: Electric Power Applications, vol. 147, no. 4, pp. 295–303, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Senini and P. J. Wolfs, “Hybrid active filter for harmonically unbalanced three phase three wire railway traction loads,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 702–710, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Salmerón, J. C. Montano, J. R. Vázquez, J. Prieto, and A. Pérez, “Compensation in nonsinusoidal, unbalanced three-phase four-wire systems with active power-line conditioner,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1968–1974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Akagi, “New trends in active filters for power conditioning,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1312–1322, 1996. View at Publisher · View at Google Scholar
  50. H. L. Jou, J. C. Wu, and K. D. Wu, “Parallel operation of passive power filter and hybrid power filter for harmonic suppression,” IEE Proceedings: Generation, Transmission and Distribution, vol. 148, no. 1, pp. 8–14, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Zha and Y. Chen, “The iterative learning control strategy for hybrid active filter to dampen harmonic resonance in industrial power system,” in Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 2, pp. 848–853, 2003.
  52. B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 960–971, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. B. R. Lin, B. R. Yang, and H. R. Tsai, “Analysis and operation of hybrid active filter for harmonic elimination,” Electric Power Systems Research, vol. 62, no. 3, pp. 191–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Chen and S. Xie, “Review of the control strategies applied to active power filters,” in Proceedings of the IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT '04), pp. 666–670, April 2004. View at Scopus
  55. K. Zhou, Z. Lv, A. Luo, and L. Liu, “Control strategy of shunt hybrid active power filter in distribution network containing distributed power,” in Proceedings of the China International Conference on Electricity Distribution (CICED '10), pp. 1–10, September 2010. View at Scopus
  56. D. Detjen, J. Jacobs, R. W. De Doncker, and H. G. Mall, “A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment,” IEEE Transactions on Power Electronics, vol. 16, no. 6, pp. 821–827, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Aredes, J. Häfner, and K. Heumann, “Three-phase four-wire shunt active filter control strategies,” IEEE Transactions on Power Electronics, vol. 12, no. 2, pp. 311–318, 1997. View at Scopus
  58. M. Aredes, L. F. C. Monteiro, and J. M. Miguel, “Control strategies for series and shunt active filters,” in Proceedings of the IEEE Bologna Power Tech Conference, pp. 1–6, June 2003.
  59. S. Khalid and A. Triapthi, “comparison of sinusoidal current control strategy & synchronous rotating frame strategy for total harmonic reduction for power electronic converters in aircraft system under different load conditions,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 1, no. 4, pp. 305–313, 2012.