About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 502465, 5 pages
http://dx.doi.org/10.1155/2012/502465
Research Article

Tunable Lowpass Filter with RF MEMS Capacitance and Transmission Line

1Department of Electronics and Telecommunications, Norwegian University of Science and Technology, 7491 Trondheim, Norway
2Electronics and Nanoscale Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
3Institute for Micro and Nano Systems Technology, Vestfold University College, 3103 Tønsberg, Norway
4Department of Microsystems and Nanotechnology, SINTEF ICT, P.O. Box 124, Blindern, 0314 Oslo, Norway

Received 27 June 2011; Accepted 5 October 2011

Academic Editor: Jiun Wei Horng

Copyright © 2012 Shimul C. Saha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zou, C. Liu, J. Schutt-Aine, J. Chen, and S. M. Kang, “Development of a wide tuning range MEMS tunable capacitor for wireless communication systems,” in Proceedings of the International Electron Devices Meeting, Technical Digest (IEDM '00), pp. 403–406, December 2000.
  2. M. Cai, X. L. Guo, Y. Li, L. Liu, and L. Zong-sheng, “Design and modeling of reconfigurable MEMS low pass filter,” in Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT '06), pp. 563–565, October 2006. View at Publisher · View at Google Scholar
  3. J. Fang, Z. W. Liu, Z. M. Chen, L. T. Liu, and Z. J. Li, “Realization of an Integrated Planar LC low-pass filter with Modified Surface Micromachining technology,” in Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC '05), pp. 729–731, December 2005. View at Publisher · View at Google Scholar
  4. D. Peroulis, S. Pacheco, K. Sarabandi, and L. P. B. Katehi, “Tunable lumped components with applications to reconfigurable MEMS filters,” in International Microwave Symposium Digest (IEEE-MTT-S '01), vol. 1, pp. 341–344, May 2001.
  5. S. Lee, J. M. Kim, J. M. Kim, Y. K. Kim, and Y. W. Kwon, “Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductors and capacitive shunt switches,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp. 691–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Park, S. Lee, J. M. Kim, H. T. Kim, Y. Kwon, and Y. K. Kim, “Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches,” Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 456–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Saha and T. Sæther, “Modeling and Simulation of Low Pass Filter using RF MEMS Capacitance and Transmission line,” in Proceedings of the International Microelectronics And Packaging Society (IMPS '05), pp. 155–159, 2005.
  8. S. C. Saha, U. Hanke, and T. Sæther, “Modeling, design and simulation of tunable band pass filter using RF MEMS capacitance and transmission line,” in Microelectronics: Design, Technology, and Packaging II, vol. 6035 of Proceedings of SPIE, Brisbane, Australia, December 2005. View at Publisher · View at Google Scholar
  9. D. M. Pozar, Microwave Engineering, chapter 8, John Wiley & Sons, New York, NY, USA, 2nd edition, 1998.
  10. Advance Design System, from Agilent.
  11. G. M. Rebeiz, RF MEMS Theory, Design and Technology, chapter 2, John Wiley & Sons, New York, NY, USA, 2nd edition, 2003.
  12. S. C. Saha, H. Sagberg, E. Poppe, G. U. Jensen, T. A. Fjeldly, and T. Sæther, “Tuning of resist slope with hard-baking parameters and release methods of extra hard photoresist for RF MEMS switches,” Sensors and Actuators, A, vol. 143, no. 2, pp. 452–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Saha, H. Sagberg, E. Poppe, G. U. Jensen, and T. Sæther, “Metallization scheme and release methods for fabrication of RF MEMS switches,” in Proceedings of 33rd Micro- and Nano- Engineering conference (MNE '07), 2007.