About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 719376, 6 pages
http://dx.doi.org/10.1155/2012/719376
Research Article

Electronically Tunable Sinusoidal Oscillator Circuit

Department of Electronics Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

Received 29 March 2012; Accepted 4 June 2012

Academic Editor: Winai Jaikla

Copyright © 2012 Sudhanshu Maheshwari and Rishabh Verma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Van Valkenburg, Analog Filter Design, Holt Sounders International, 1987.
  2. A. M. Soliman, “Novel oscillators using current and voltage followers,” Journal of the Franklin Institute, vol. 335, no. 6, pp. 997–1007, 1998. View at Scopus
  3. A. M. Soliman, “Current mode CCII oscillators using grounded capacitors and resistors,” International Journal of Circuit Theory and Applications, vol. 26, no. 5, pp. 431–438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. I. A. Khan, P. Beg, and M. T. Ahmed, “First order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs,” Arabian Journal for Science and Engineering, vol. 32, no. 2, pp. 119–126, 2007. View at Scopus
  5. P. Prommee and K. Dejhan, “An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier,” International Journal of Electronics, vol. 89, no. 5, pp. 365–379, 2002. View at Scopus
  6. E. Sanchez-Sinencio, J. Ramirez-Angulo, B. Linares-Barranco, and A. Rodriguez-Vazquez, “Operational transconductance amplifier-based nonlinear function syntheses,” IEEE Journal of Solid-State Circuits, vol. 24, no. 6, pp. 1576–1586, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Maheshwari and I. A. Khan, “Current controlled third order quadrature oscillator,” IEE Proceedings, vol. 152, no. 6, pp. 605–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Tsukutani, Y. Sumi, and Y. Fukui, “Electronically controlled current-mode oscillators using MO-OTAs and grounded capacitors,” Frequenz, vol. 60, no. 11-12, pp. 220–223, 2006. View at Scopus
  9. S. Maheshwari, “Quadrature oscillator using grounded components with current and voltage outputs,” IET Circuits, Devices and Systems, vol. 3, no. 4, pp. 153–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Lawanwisut and M. Siripruchyanun, “High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs,” in Proceedings of the IEEE Region 10 International Conference (TENCON '09), November 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Maheshwari, “Analogue signal processing applications using a new circuit topology,” IET Circuits, Devices and Systems, vol. 3, no. 3, pp. 106–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Maheshwari, “Current-mode third-order quadrature oscillator,” IET Circuits, Devices and Systems, vol. 4, no. 3, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Horng, H. Lee, and J. Y. Wu, “Electronically tunable third-order quadrature oscillator using CDTAs,” Radioengineering, vol. 19, no. 2, pp. 326–330, 2010. View at Scopus
  14. S. Maheshwari, “High output impedance current-mode all-pass sections with two grounded passive components,” IET Circuits Devices and Systems, vol. 2, no. 2, pp. 234–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Biolková, J. Bajer, and D. Biolek, “Four-phase oscillators employing two active elements,” Radioengineering, vol. 20, no. 1, pp. 334–339, 2011. View at Scopus
  16. P. Prommee, N. Sra-ium, and K. Dejhan, “High-frequency log-domain current-mode multiphase sinusoidal oscillator,” IET Circuits, Devices and Systems, vol. 4, no. 5, pp. 440–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Fabre, O. Saaid, F. Wiest, and C. Boucheron, “High frequency applications based on a new current controlled conveyor,” IEEE Transactions on Circuits and Systems I, vol. 43, no. 2, pp. 82–91, 1996. View at Scopus
  18. M. T. Abuelma'atti and N. A. Tasadduq, “A novel single-input multiple-output current-mode current-controlled universal filter,” Microelectronics Journal, vol. 29, no. 11, pp. 901–905, 1998. View at Scopus
  19. M. T. Abuelma'atti and M. A. Al-Qahtani, “A current-mode current-controlled current-conveyor-based analogue multiplier/divider,” International Journal of Electronics, vol. 85, no. 1, pp. 71–77, 1998. View at Scopus
  20. T. Tsukutani, Y. Sumi, and N. Yabuki, “Versatile current-mode biquadratic circuit using only plus type CCCIIs and grounded capacitors,” International Journal of Electronics, vol. 94, no. 12, pp. 1147–1156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Loescharatatamdee, W. Kiranon, W. Sangpisit, and W. Yadum, “Multiphase sinusoidal oscillator using translinear current conveyors and grounded passive components,” in Proceedings of the 33rd Southeastern Symposium on System Theory, pp. 59–563, 2001. View at Publisher · View at Google Scholar
  22. M. T. Abuelma'atti and R. H. Almaskati, “A new OTA-based active-C oscillator,” International Journal of Electronics, vol. 63, no. 3, pp. 331–334, 1987. View at Scopus
  23. I. A. Khan, M. T. Ahmed, and N. Minhaj, “Tunable OTA-based multiphase sinusoidal oscillators,” International Journal of Electronics, vol. 72, no. 3, pp. 443–450, 1992. View at Scopus
  24. P. Prommee, K. Angkeaw, M. Somdunyakanok, and K. Dejhan, “CMOS-based near zero-offset multiple inputs max-min circuits and its applications,” Analog Integrated Circuits and Signal Processing, vol. 61, no. 1, pp. 93–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. S. Sedra and K. C. Smith, Microelectronics Circuits, Oxford University Press, 2011.