About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 729328, 6 pages
http://dx.doi.org/10.1155/2012/729328
Research Article

Gate Stack Engineering and Thermal Treatment on Electrical and Interfacial Properties of Ti/Pt/HfO2/InAs pMOS Capacitors

Department of Electrical Engineering, National Central University, Chungli 32001, Taiwan

Received 16 March 2012; Revised 6 June 2012; Accepted 11 June 2012

Academic Editor: Yeong-Her Wang

Copyright © 2012 Chung-Yen Chien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Dewey, M. K. Hudait, K. Lee et al., “Carrier transport in high-mobility III-V quantum-well transistors and performance impact for high-speed low-power logic applications,” IEEE Electron Device Letters, vol. 29, no. 10, pp. 1094–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Applied Physics Letters, vol. 47, no. 10, pp. 1099–1101, 1985. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Noreika, M. H. Francombe, and C. E. C. Wood, “Growth of Sb and InSb by molecular-beam epitaxy,” Journal of Applied Physics, vol. 52, no. 12, pp. 7416–7420, 1981. View at Publisher · View at Google Scholar · View at Scopus
  4. H. S. Kim, I. Ok, M. Zhang et al., “A study of metal-oxide-semiconductor capacitors on GaAs, In0.53 Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer,” Applied Physics Letters, vol. 93, no. 6, Article ID 062111, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. K. Dalapati, Y. Tong, W. Y. Loh, H. K. Mun, and B. J. Cho, “Impact of interfacial layer control using Gd2 O3 in HfO2 gate dielectric on GaAs,” Applied Physics Letters, vol. 90, no. 18, Article ID 183510, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. C. Lin, T. Yang, H. Sharifi et al., “Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Letters, vol. 91, no. 21, Article ID 212101, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. S. Aguirre-Tostado, M. Milojevic, K. J. Choi et al., “S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates,” Applied Physics Letters, vol. 93, no. 6, Article ID 061907, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. S. Kang, C. Y. Kim, M. H. Cho et al., “Thickness dependence on crystalline structure and interfacial reactions in HfO2 films on InP (001) grown by atomic layer deposition,” Applied Physics Letters, vol. 97, no. 17, Article ID 172108, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Wheeler, L.-E. Wernersson, L. Fröberg et al., “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectronic Engineering, vol. 86, no. 7-9, pp. 1561–1563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L.-E. Wernersson, “Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates,” Applied Physics Letters, vol. 100, no. 13, pp. 132905–132907, 2012.
  11. H. D. Trinh, E. Y. Chang, Y. Y. Wong et al., “Effects of wet chemical and trimethyl aluminum treatments on the interface properties in atomic layer deposition of Al2O3 on InAs,” Japanese Journal of Applied Physics, vol. 49, no. 11, Article ID 111201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Oigawa, J. F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” Japanese Journal of Applied Physics, vol. 30, no. 3, pp. L322–L325, 1991. View at Scopus
  13. H. D. Trinh, E. Y. Chang, P. W. Wu et al., “The influences of surface treatment and gas annealing conditions on the inversion behaviors of the atomic-layer-deposition Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitor,” Applied Physics Letters, vol. 97, no. 4, Article ID 042903, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Marchiori, D. J. Webb, C. Rossel et al., “H plasma cleaning and a-Si passivation of GaAs for surface channel device applications,” Journal of Applied Physics, vol. 106, no. 11, Article ID 114112, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. P. D. Ye, “Main determinants for III-V metal-oxide-semiconductor field-effect transistors (invited),” Journal of Vacuum Science and Technology A, vol. 26, no. 4, pp. 697–704, 2008. View at Publisher · View at Google Scholar · View at Scopus