About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 879294, 11 pages
http://dx.doi.org/10.1155/2012/879294
Research Article

An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

1Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
2RF MicroDevices, Inc., Greensboro, NC 27409, USA
3Department of Engineering and Computer Engineering, The University of Alabama, Birmingham, AL 35294, USA
4Oak Ridge National Laboratory, Oak Ridge, TN 37831-6006, USA

Received 14 November 2011; Revised 19 February 2012; Accepted 5 March 2012

Academic Editor: Sheng Lyang Jang

Copyright © 2012 M. A. Adeeb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.