About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 901076, 5 pages
http://dx.doi.org/10.1155/2012/901076
Research Article

Effects of Annealing Time on the Performance of OTFT on Glass with ZrO2 as Gate Dielectric

1Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, ON, Canada M5S 3E4
2Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, Canada M5S 3G4
3Department of Physics, Yunnan University, 2 Cuihu Beilu, Yunnan, Kumming 650091, China

Received 15 July 2011; Accepted 6 October 2011

Academic Editor: Hsiao W. Zan

Copyright © 2012 W. M. Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Applied Physics Letters, vol. 78, no. 23, pp. 3592–3594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Halik, H. Klauk, U. Zschieschang et al., “Low-voltage organic transistors with an amorphous molecular gate dielectric,” Nature, vol. 431, no. 7011, pp. 963–966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Someya and T. Sakurai, “Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications,” in Proceedings of the IEEE International Electron Devices Meeting, pp. 203–206, December 2003. View at Scopus
  4. A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, no. 18, pp. 1210–1212, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Tardy, M. Erouel, A. L. Deman et al., “Organic thin film transistors with HfO2 high-k gate dielectric grown by anodic oxidation or deposited by sol-gel,” Microelectronics Reliability, vol. 47, no. 2-3, pp. 372–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. Koo, J. W. Lim, S. H. Kim et al., “Pentacene thin-film transistors and inverters with plasma-enhanced atomic-layer-deposited Al2O3 gate dielectric,” Thin Solid Films, vol. 515, no. 5, pp. 3132–3137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, “Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator,” Journal of Applied Physics, vol. 95, no. 1, pp. 316–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors,” Organic Electronics, vol. 3, no. 2, pp. 65–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Hiroshiba, R. Kumashiro, K. Tanigaki et al., “Rubrene single crystal field-effect transistor with epitaxial BaTiO3 high- k gate insulator,” Applied Physics Letters, vol. 89, no. 15, Article ID 152110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. K. Nahar, V. Singh, and A. Sharma, “Study of electrical and microstructure properties of high dielectric hafnium oxide thin film for MOS devices,” Journal of Materials Science, vol. 18, no. 6, pp. 615–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. H. Lee, S. C. Song, R. Choi, and P. Kirsch, “Metal electrode/high-κ dielectric gate-stack technology for power management,” IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 8–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. C. Fulton, T. E. Cook, G. Lucovsky, and R. J. Nemanich, “Interface instabilities and electronic properties of ZrO2 on silicon (100),” Journal of Applied Physics, vol. 96, no. 5, pp. 2665–2673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. J. Qi, R. Nieh, B. H. Lee et al., “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si,” in Proceedings of the 1999 IEEE International Devices Meeting (IEDM), pp. 145–148, December 1999. View at Scopus
  14. W. J. Qi, R. Nieh, B. H. Lee et al., “Performance of MOSFETs with ultra thin ZrO2 and Zr silicate gate dielectrics,” in Proceedings of the 2000 Symposium on VLSI Technology, pp. 40–41, June 2000. View at Scopus
  15. H. E. Katz, L. Torsi, and A. Dodabalapur, “Synthesis, material properties, and transistor performance of highly pure thiophene oligomers,” Chemistry of Materials, vol. 7, no. 12, pp. 2235–2237, 1995. View at Scopus
  16. H. E. Katz, A. Dodabalapur, L. Torsi, and D. Elder, “Precursor synthesis, coupling, and TFT evaluation of end-substituted thiophene hexamers,” Chemistry of Materials, vol. 7, no. 12, pp. 2238–2240, 1995. View at Scopus
  17. R. Jiang, E. Q. Xie, and Z. F. Wang, “Effect of inner oxygen on the interfacial layer formation for HfO2 gate dielectric,” Journal of Materials Science, vol. 42, no. 17, pp. 7343–7347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Pereira, P. Barquinha, E. Fortunato, and R. Martins, “Low temperature processed hafnium oxide: structural and electrical properties,” Materials Science in Semiconductor Processing, vol. 9, no. 6, pp. 1125–1132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties, and electronic transport,” Journal of Applied Physics, vol. 93, no. 1, pp. 347–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Steudel, S. De Vusser, S. De Jonge et al., “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 4400–4402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Kwan, K. H. Cheng, P. T. Lai, and C. M. Che, “Improved carrier mobility for pentacene TFT by NH3 annealing of gate dielectric,” Solid-State Electronics, vol. 51, no. 1, pp. 77–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. H. Cheng, W. M. Tang, L. F. Deng, C. H. Leung, P. T. Lai, and C. M. Che, “Correlation between carrier mobility of pentacene thin-film transistor and surface passivation of its gate dielectric,” Journal of Applied Physics, vol. 104, no. 11, Article ID 116107, 2008. View at Publisher · View at Google Scholar · View at Scopus