About this Journal Submit a Manuscript Table of Contents
Active and Passive Electronic Components

Volume 2014 (2014), Article ID 329043, 5 pages

http://dx.doi.org/10.1155/2014/329043
Research Article

A Novel Power Electronic Inverter Circuit for Transformerless Photovoltaic Systems

Department of Information Engineering, Shijiazhuang University of Economics, Shijiazhuang 050031, China

Received 8 February 2014; Revised 5 May 2014; Accepted 5 May 2014; Published 26 May 2014

Academic Editor: Gerard Ghibaudo

Copyright © 2014 Cao Hai-Yan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Capacitive leakage current is one of the most important issues for transformerless photovoltaic systems. In order to deal with the capacitive leakage current, a new power electronic inverter circuit is proposed in this paper. The inverter circuit consists of six switches and operates with constant common mode voltage. Theoretical analysis is conducted to clarify the circuit operation principle and the common mode characteristic. The performance evaluation test is carried out, and test results demonstrate that the capacitive leakage current can be significantly minimized with the proposed power electronic inverter circuit.

1. Introduction

Photovoltaic (PV) power systems are very attractive and widely used in recent years. In order to integrate the PV systems into grid, a power electronic component should be required to convert DC energy source generated by PV arrays to AC component [1], which is fed into grid. In general, a transformer is installed between PV arrays and grid for galvanic isolation. The transformer is heavy with large volume, along with the copper and iron losses during transformer operation [2, 3]. Therefore, the transformerless PV system is popular and received more and more attention [412], due to its low cost, small size, and high efficiency. However, a technical challenge arises for transformerless PV systems. More specifically, the capacitive leakage current is generated between photovoltaic modules and the ground [13]. In practice, this capacitive leakage current is very difficult to handle, because the capacitance between photovoltaic modules and ground is usually highly unpredictable, and it varies significantly with temperature or humidity [14]. The presence of leakage currents is very harmful, since they could put the life of a photovoltaic module installer at risk if he touches the photovoltaic module [15]. Additionally, they will bring high-frequency harmonics, which may lead to problems with electromagnetic compatibility [16]. Therefore, it is important to deal with the capacitive leakage current problem in the transformerless PV system.

The objective of this paper is to present a novel power electronic inverter circuit for transformerless photovoltaic system. The capacitive leakage current can be minimized with the proposed inverter circuit.

2. Circuit Description

The schematic diagram of the proposed power electronic inverter circuit is illustrated in Figure 1. It should be noted that the parasitic capacitance between ground and positive terminal of dc bus point is one of the factors for the system stray capacitance. In this case, considering the entire stray capacitances of , the parasitic capacitance between ground and positive terminal of the inverter dc bus point will be and so is the capacitance of ground-negative terminal, as shown in Figure 1. The capacitance value depends on the PV panel frame structure, weather conditions, humidity, and so on. Therefore, it is usually highly unpredictable. In order to clarify the capacitive leakage current minimization mechanism, the system’s common mode model is built, as shown in Figure 2, where is the common mode voltage and is defined as follows:

329043.fig.001
Figure 1: Schematic diagram of proposed power electronic inverter circuit.
329043.fig.002
Figure 2: System’s common mode model [17].

In practice, the filter inductors and are designed with the equal value; that is, . So, the differential mode voltage does not contribute to the capacitive leakage current, as shown in (2) and Figure 2.

On the other hand, if the common mode voltage is time varying, the capacitive leakage current will arise and flow in the loop, as shown in Figure 2.

In order to deal with the capacitive leakage current, it is of great importance that the common mode voltage in Figure 2 should be kept constant. The following will present this objective achieved by the proposed power electronic inverter circuit.

The proposed inverter circuit operates in four modes, as shown in Figure 4 and Table 1.

tab1
Table 1: Operation modes and voltages.

In Mode 1, the switches , , and are turned on, and other switches are turned off. The differential mode voltage is , while the common mode voltage can be expressed as

In Mode 2, only the switch is turned on, and other switches are turned off. The current flows through and diode of . In this case, the differential mode voltage is 0, while the common mode voltage remains unchanged as

In Mode 3, the switches , , and are turned on, and other switches are turned off. The differential mode voltage is , while the common mode voltage can be expressed as

In Mode 4, only the switch is turned on, and other switches are turned off. The current flows through and diode of . In this case, the differential mode voltage is 0, while the common mode voltage remains unchanged as

In summary, the above analysis reveals that the common mode voltage can be kept constant as all the time. Therefore, the capacitive leakage current can be significantly minimized, according to theoretical analysis of Figure 2. The following will present the test results.

3. Performance Evaluation

In order to verify the effectiveness of the proposed power electronic inverter circuit, the inverter circuit is designed in MATLAB/Simulink. The circuit components and parameters are listed as follows: system power is 3 kW, dc bus voltage is 400 V, grid voltage is 220 Vac, grid frequency is 50 Hz, inverter circuit switching frequency is 10 kHz, circuit filter inductor  mH, and parasitic capacitor  nF; see Figure 3.

329043.fig.003
Figure 3: Switching state of the proposed inverter circuit.
fig4
Figure 4: Operation modes of the proposed inverter.

Figure 5(a) shows the test waveform of the switch states; it can be observed that, at any given time, only two switches operate in high-frequency mode and the other four switches operate in low-frequency mode, so the high efficiency can be achieved. On the other hand, the inverter output voltage waveform is shown in Figure 5(b), where three-level output voltage is achieved. It is beneficial to the grid current ripple reduction. Figure 5(c) shows the grid current waveform and its spectrum analysis. It can be seen that the grid current is sinusoidal with the total harmonic distortion of 1.9%, which is well below 5% specified in IEEE Std. 929-2000 [18].

fig5
Figure 5: Test results.

Figure 5(d) shows the capacitive leakage current waveform and its spectrum analysis. It can be seen that the leakage current is well below 300 mA specified in VDE 0126-1-1, thanks to the proposed power electronic inverter.

4. Conclusion

This paper has presented a new power electronic inverter circuit. Its unique feature lies in that the proposed circuit can keep the system’s common mode voltage constant all the time, and thus the capacitive leakage current can be significantly minimized, which complies with the international standard IEEE Std. 929-2000 and VDE 0126-1-1. Therefore, it is attractive to the transformerless photovoltaic system applications. It should be noted that other different inverter circuits are also interesting and can be used for the transformerless photovoltaic system applications; please refer to [19, 20] for further reading.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

  1. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Armstrong, D. J. Atkinson, C. M. Johnson, and T. D. Abeyasekera, “Auto-calibrating dc link current sensing technique for transformerless, grid connected, H-bridge inverter systems,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1385–1393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. W. M. Blewitt, D. J. Atkinson, J. Kelly, and R. A. Lakin, “Approach to low-cost prevention of DC injection in transformerless grid connected inverters,” IET Power Electronics, vol. 3, no. 1, pp. 111–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. González, J. López, P. Sanchis, and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 693–697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Ó. López, F. D. Freijedo, A. G. Yepes et al., “Eliminating ground current in a transformerless photovoltaic application,” IEEE Transactions on Energy Conversion, vol. 25, no. 1, pp. 140–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Xiao, S. Xie, Y. Chen, and R. Huang, “An optimized transformerless photovoltaic grid-connected inverter,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1887–1895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. González, E. Gubía, J. López, and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2694–2702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Xiao and S. Xie, “Transformerless split-inductor neutral point clamped three-level PV grid-connected inverter,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1799–1808, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Cavalcanti, K. C. de Oliveira, A. M. de Farias, F. A. S. Neves, G. M. S. Azevedo, and F. C. Camboim, “Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1360–1368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. V. Araújo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3118–3128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Kerekes, R. Teodorescu, P. Rodríguez, G. Vázquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 184–191, 2011.
  12. W. Yu, J.-S. Lai, H. Qian, and C. Hutchens, “High-efficiency MOSFET inverter with H6-type configuration for photovoltaic nonisolated AC-module applications,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1253–1260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Gubía, P. Sanchis, A. Ursúa, J. López, and L. Marroyo, “Ground currents in single-phase transformerless photovoltaic systems,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 7, pp. 629–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Kerekes, R. Teodorescu, M. Liserre, C. Klumpner, and M. Sumner, “Evaluation of three-phase transformerless photovoltaic inverter topologies,” IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2202–2211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Hernández, P. G. Vidal, and A. Medina, “Characterization of the insulation and leakage currents of PV generators: relevance for human safety,” Renewable Energy, vol. 35, no. 3, pp. 593–601, 2010.
  16. R. Araneo, S. Lammens, M. Grossi, and S. Bertone, “EMC issues in high-power grid-connected photovoltaic plants,” IEEE Transactions on Electromagnetic Compatibility, vol. 51, no. 3, pp. 639–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Yang, W. Li, Y. Gu, W. Cui, and X. He, “Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 752–762, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. IEEE Std 929, “Recommended practice for utility interface of photovoltaic systems,” in Proceedings of the IEEE Standards Coordinating Committee 21 on Photovoltaics, Dispersed Generation, and Energy Storage, New York, NY, USA, 2000.
  19. Z. Li, S. Kai, X. Yan, and X. Mu, “H6 transformerless full-bridge PV grid-tied inverters,” IEEE Transactions on Power Electron, vol. 29, no. 3, pp. 1229–1238, 2014.
  20. L. Zhang, K. Sun, L. Feng, Y. Xing, and M. Xu, “H6 non-isolated full bridge grid-connected PV inverters with low leakage currents,” Proceedings of the Chinese Society of Electrical Engineering, vol. 32, no. 15, pp. 1–7, 2012. View at Scopus