About this Journal Submit a Manuscript Table of Contents
Advances in Preventive Medicine
Volume 2011 (2011), Article ID 984683, 7 pages
http://dx.doi.org/10.4061/2011/984683
Review Article

Resistance Training Is an Effective Tool against Metabolic and Frailty Syndromes

Department of Medicine, University of Turku, P.O. Box 52, 20521 Turku, Finland

Received 5 July 2010; Accepted 23 November 2010

Academic Editor: Helena Käyhty

Copyright © 2011 Jan Sundell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Charette, L. McEvoy, G. Pyka et al., “Muscle hypertrophy response to resistance training in older women,” Journal of Applied Physiology, vol. 70, no. 5, pp. 1912–1916, 1991. View at Scopus
  2. S. Tsuzuku, Y. Ikegami, and K. Yabe, “Effects of high-intensity resistance training on bone mineral density in young male powerlifters,” Calcified Tissue International, vol. 63, no. 4, pp. 283–286, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Ormsbee, J. P. Thyfault, E. A. Johnson, R. M. Kraus, D. C. Myung, and R. C. Hickner, “Fat metabolism and acute resistance exercise in trained men,” Journal of Applied Physiology, vol. 102, no. 5, pp. 1767–1772, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith, and C. Lenfant, “Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition,” Circulation, vol. 109, no. 3, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. L. P. Fried, C. M. Tangen, J. Walston et al., “Frailty in older adults: evidence for a phenotype,” The Journals of Gerontology Series A, vol. 56, no. 3, pp. M146–M156, 2001.
  6. S. B. Heymsfield, D. Gallagher, D. P. Kotler, Z. Wang, D. B. Allison, and S. Heshka, “Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass,” American Journal of Physiology, vol. 282, no. 1, pp. E132–E138, 2002.
  7. G. R. Hunter, D. R. Bryan, C. J. Wetzstein, P. A. Zuckerman, and M. M. Bamman, “Resistance training and intra-abdominal adipose tissue in older men and women,” Medicine and Science in Sports and Exercise, vol. 34, no. 6, pp. 1023–1028, 2002.
  8. D. J. Cuff, G. S. Meneilly, A. Martin, A. Ignaszewski, H. D. Tildesley, and J. J. Frohlich, “Effective exercise modality to reduce insulin resistance in women with type 2 diabetes,” Diabetes Care, vol. 26, no. 11, pp. 2977–2982, 2003. View at Publisher · View at Google Scholar
  9. M. A. Tresierras and G. J. Balady, “Resistance training in the treatment of diabetes and obesity: mechanisms and outcomes,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 29, no. 2, pp. 67–75, 2009. View at Scopus
  10. M. S. Treuth, G. R. Hunter, T. Kekes-Szabo, R. L. Weinsier, M. I. Goran, and L. Berland, “Reduction in intra-abdominal adipose tissue after strength training in older women,” Journal of Applied Physiology, vol. 78, no. 4, pp. 1425–1431, 1995. View at Scopus
  11. C. Irvine and N. F. Taylor, “Progressive resistance exercise improves glycaemic control in people with type 2 diabetes mellitus: a systematic review,” The Australian journal of physiotherapy, vol. 55, no. 4, pp. 237–246, 2009. View at Scopus
  12. S. Bweir, M. Al-Jarrah, A. M. Almalty, et al., “Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes,” Diabetology & Metabolic Syndrome, vol. 1, p. 27, 2009.
  13. M. K. Holten, M. Zacho, M. Gaster, C. Juel, J. F. P. Wojtaszewski, and F. Dela, “Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes,” Diabetes, vol. 53, no. 2, pp. 294–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Fagard, “Exercise is good for your blood pressure: effects of endurance training and resistance training,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 9, pp. 853–856, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. K. Tambalis, D. B. Panagiotakos, S. A. Kavouras, and L. S. Sidossis, “Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence,” Angiology, vol. 60, no. 5, pp. 614–632, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. E. Jones, K. W. Stephenson, J. G. King, K. R. Knight, T. L. Marshall, and W. B. Scott, “Sarcopenia–mechanisms and treatments,” Journal of Geriatric Physical Therapy, vol. 32, no. 2, pp. 39–45, 2009. View at Scopus
  17. A. P. W. Johnston, M. De Lisio, and G. Parise, “Resistance training, sarcopenia, and the mitochondrial theory of aging,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 1, pp. 191–199, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. B. Strasser, M. Keinrad, P. Haber, and W. Schobersberger, “Efficacy of systematic endurance and resistance training on muscle strength and endurance performance in elderly adults—a randomized controlled trial,” Wiener Klinische Wochenschrift, vol. 121, no. 23-24, pp. 757–764, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. F. Binder, K. E. Yarasheski, K. Steger-May et al., “Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial,” The Journals of Gerontology Series A, vol. 60, no. 11, pp. 1425–1431, 2005. View at Scopus
  20. I. Bautmans, K. Van Puyvelde, and T. Mets, “Sarcopenia and functional decline: pathophysiology, prevention and therapy,” Acta Clinica Belgica, vol. 64, no. 4, pp. 303–316, 2009. View at Scopus
  21. L. G. Raisz, “Pathogenesis of osteoporosis: concepts, conflicts, and prospects,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3318–3325, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Guadalupe-Grau, T. Fuentes, B. Guerra, and J. A. L. Calbet, “Exercise and bone mass in adults,” Sports Medicine, vol. 39, no. 6, pp. 439–468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Bonaiuti, B. Shea, R. Iovine et al., “Exercise for preventing and treating osteoporosis in postmenopausal women,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000333, 2002.
  24. P. D. Chilibeck, M. J. Chrusch, K. E. Chad, K. S. Davison, and D. G. Burke, “Creatine monohydrate and resistance training increase bone mineral content and density in older men,” Journal of Nutrition, Health and Aging, vol. 9, no. 5, pp. 352–355, 2005.
  25. L. B. Houtkooper, V. A. Stanford, L. L. Metcalfe, T. G. Lohman, and S. B. Going, “Preventing osteoporosis the bone estrogen strength training way,” ACSM's Health & Fitness Journal, vol. 11, no. 1, pp. 21–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Russell, D. Motlagh, and W. W. Ashley, “Form follows function: how muscle shape is regulated by work,” Journal of Applied Physiology, vol. 88, no. 3, pp. 1127–1132, 2000.
  27. D. G. Sale, “Neural adaptation to resistance training,” Medicine and Science in Sports and Exercise, vol. 20, supplement 5, pp. S135–S145, 1988.
  28. S. C. Glass and D. R. Stanton, “Self-selected resistance training intensity in novice weightlifters,” Journal of Strength and Conditioning Research, vol. 18, no. 2, pp. 324–327, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. Steib, D. Schoene, and K. Pfeifer, “Dose-response relationship of resistance training in older adults: a meta-analysis,” Medicine and Science in Sports and Exercise, vol. 42, no. 5, pp. 902–914, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. W. J. Kraemer, K. Adams, E. Cafarelli et al., “Progression models in resistance training for healthy adults,” Medicine and Science in Sports and Exercise, vol. 34, no. 2, pp. 364–380, 2002.
  31. B. F. de Salles, R. Simão, F. Miranda, J. da Silva Novaes, A. Lemos, and J. M. Willardson, “Rest interval between sets in strength training,” Sports Medicine, vol. 39, no. 9, pp. 766–777, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. N. A. Ratamess, A. D. Faigenbaum, J. R. Hoffman, and J. Kang, “Self-selected resistance training intensity in healthy women: the influence of a personal trainer,” Journal of Strength and Conditioning Research, vol. 22, no. 1, pp. 103–111, 2008. View at Scopus
  33. R. A. Winett and R. N. Carpinelli, “Potential health-related benefits of resistance training,” Preventive Medicine, vol. 33, no. 5, pp. 503–513, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. C. M. Kerksick, C. D. Wilborn, B. I. Campbell et al., “Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men,” Journal of Strength and Conditioning Research, vol. 23, no. 3, pp. 962–971, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. W. F. Martin, L. E. Armstrong, and N. R. Rodriguez, “Dietary protein intake and renal function,” Nutrition and Metabolism, vol. 2, article no. 25, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. S. Bilsborough and N. Mann, “A review of issues of dietary protein intake in humans,” International Journal of Sport Nutrition and Exercise Metabolism, vol. 16, no. 2, pp. 129–152, 2006. View at Scopus
  37. R. B. Kreider and B. Campbell, “Protein for exercise and recovery,” Physician and Sportsmedicine, vol. 37, no. 2, pp. 13–21, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. D. R. Moore, M. J. Robinson, J. L. Fry et al., “Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 161–168, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. J. J. Hulmi, V. Kovanen, H. Selänne, W. J. Kraemer, K. Häkkinen, and A. A. Mero, “Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression,” Amino Acids, vol. 37, no. 2, pp. 297–308, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. J. Snow and R. M. Murphy, “Factors influencing creatine loading into human skeletal muscle,” Exercise and Sport Sciences Reviews, vol. 31, no. 3, pp. 154–158, 2003. View at Scopus
  41. E. S. Rawson and J. S. Volek, “Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance,” Journal of Strength and Conditioning Research, vol. 17, no. 4, pp. 822–831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. R. Stout, B. Sue Graves, J. T. Cramer et al., “Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64–86 years),” Journal of Nutrition, Health and Aging, vol. 11, no. 6, pp. 459–464, 2007. View at Scopus
  43. F. Kuethe, A. Krack, B. M. Richartz, and H. R. Figulla, “Creatine supplementation improves muscle strength in patients with congestive heart failure,” Pharmazie, vol. 61, no. 3, pp. 218–222, 2006. View at Scopus
  44. M. G. Bemben and H. S. Lamont, “Creatine supplementation and exercise performance: recent findings,” Sports Medicine, vol. 35, no. 2, pp. 107–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Esmarck, J. L. Andersen, S. Olsen, E. A. Richter, M. Mizuno, and M. Kjær, “Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans,” Journal of Physiology, vol. 535, no. 1, pp. 301–311, 2001. View at Publisher · View at Google Scholar · View at Scopus