About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2011 (2011), Article ID 204501, 7 pages
http://dx.doi.org/10.1155/2011/204501
Research Article

Pharmacokinetics of p-Aminohippuric Acid and Inulin in Rabbits with Aristolochic Acid Nephropathy

College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11014, Taiwan

Received 30 October 2010; Revised 14 January 2011; Accepted 1 March 2011

Academic Editor: Masahiro Oike

Copyright © 2011 Chiao-Shih Tseng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Vanherweghem, M. Depierreux, C. Tielemans et al., “Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs,” Lancet, vol. 341, no. 8842, pp. 387–391, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Vanhaelen, R. Vanhaelen-Fastre, P. But, and J. L. Vanherweghem, “Identification of aristolochic acid in Chinese herbs,” Lancet, vol. 343, no. 8890, p. 174, 1994. View at Scopus
  3. G. Krumbiegel, J. Hallensleben, W. H. Mennicke, N. Rittmann, and H. J. Roth, “Studies on the metabolism of aristolochic acids I and II,” Xenobiotica, vol. 17, no. 8, pp. 981–991, 1987.
  4. J. L. Nortier, M. C. M. Martinez, H. H. Schmeiser et al., “Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi),” New England Journal of Medicine, vol. 342, no. 23, pp. 1686–1692, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. P. Cosyns, J. P. Dehoux, Y. Guiot et al., “Chronic aristolochic acid toxicity in rabbits: a model of Chinese herbs nephropathy?” Kidney International, vol. 59, no. 6, pp. 2164–2173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Vanherweghem, “Misuse of herbal remedies: the case of an outbreak of terminal renal failure in Belgium (Chinese herbs nephropathy),” Journal of Alternative and Complementary Medicine, vol. 4, no. 1, pp. 9–13, 1998. View at Scopus
  7. B. Stengel and E. Jones, “End-stage renal insufficiency associated with Chinese herbal consumption in France,” Nephrologie, vol. 19, pp. 15–20, 1998.
  8. J. M. Peña, M. Borrás, J. Ramos, and J. Montoliu, “Rapidly progressive interstitial renal fibrosis due to a chronic intake of a herb (Aristolochia pistolochia) infusion,” Nephrology Dialysis Transplantation, vol. 11, no. 7, pp. 1359–1360, 1996. View at Scopus
  9. G. M. Lord, R. Tagore, T. Cook, P. Gower, and C. D. Pusey, “Nephropathy caused by chinese herbs in the UK,” Lancet, vol. 354, no. 9177, pp. 481–482, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Cronin, G. Maidment, T. Cook et al., “Aristolochic acid as a causative factor in a case of Chinese herbal nephropathy,” Nephrology Dialysis Transplantation, vol. 17, no. 3, pp. 524–525, 2002. View at Scopus
  11. M. M. Meyer, T. P. Chen, and W. M. Bennett, “Chinese herb nephropathy,” Baylor University Medical Center Proceedings, vol. 13, pp. 334–337, 2000.
  12. C. H. Chang, Y. M. Wang, A. H. Yang, and S. S. Chiang, “Rapidly progressive interstitial renal fibrosis associated with Chinese herbal medications,” American Journal of Nephrology, vol. 21, no. 6, pp. 441–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. FDA: U.S. Department of Health and Human Servcices. Aristolochic Acid: FDA warns consumers to discontinue use of botanical products that contain aristolochic acid, 2001, http://www.fda.gov/Food/DietarySupplements/Alerts/ucm096388.htm.
  14. L. S. Gold and T. H. Slone, “Aristolochic acid, an herbal carcinogen, sold on the Web after FDA alert,” New England Journal of Medicine, vol. 349, no. 16, pp. 1576–1577, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. P. Cosyns, M. Jadoul, J. P. Squifflet, J. F. De Plaen, D. Ferluga, and C. Van Ypersele De Strihou, “Chinese herbs nephropathy: a clue to Balkan endemic nephropathy?” Kidney International, vol. 45, no. 6, pp. 1680–1688, 1994. View at Scopus
  16. M. Depierreux, B. Van Damme, K. V. Houte, and J. L. Vanherweghem, “Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs,” American Journal of Kidney Diseases, vol. 24, no. 2, pp. 172–180, 1994. View at Scopus
  17. S. M. Chen, M. Y. Fan, C. C. Tseng, Y. Ho, and K. Y. Hsu, “Pharmacokinetics and nephrotoxicity of aristolochic acid in rabbits,” Toxicon, vol. 50, no. 2, pp. 180–188, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. Sato, D. Takahashi, S. M. Chen et al., “Acute nephrotoxicity of aristolochic acids in mice,” Journal of Pharmacy and Pharmacology, vol. 56, no. 2, pp. 221–229, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. D. Debelle, J. L. Nortier, E. G. De Prez et al., “Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 431–436, 2002. View at Scopus
  20. V. P. Shah, K. K. Midha, S. Dighe et al., “Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies,” Pharmaceutical Research, vol. 9, pp. 588–592, 1992.
  21. R. C. Shumaker, “PKCALC: a BASIC interactive computer program for statistical and pharmacokinetic analysis of data,” Drug Metabolism Reviews, vol. 17, no. 3-4, pp. 331–348, 1986.
  22. Sci Software. WinNonlin, 1995.
  23. J. B. Gouyon and J. P. Guignard, “Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits,” Kidney International, vol. 33, no. 6, pp. 1078–1083, 1988.
  24. S. E. Tett, C. M. J. Kirkpatrick, A. S. Gross, and A. J. McLachlan, “Principles and clinical application of assessing alterations in renal elimination pathways,” Clinical Pharmacokinetics, vol. 42, no. 14, pp. 1193–1211, 2003. View at Publisher · View at Google Scholar
  25. R. W. Van Olden, B. A. C. Van Acker, G. C. M. Koomen, R. T. Krediet, and L. Arisz, “Contribution of tubular anion and cation secretion to residual renal function in chronic dialysis patients,” Clinical Nephrology, vol. 49, no. 3, pp. 167–172, 1998.
  26. Y. T. Hong, L. S. Fu, L. H. Chung, S. C. Hung, Y. T. Huang, and C. S. Chi, “Fanconi's syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs,” Pediatric Nephrology, vol. 21, no. 4, pp. 577–579, 2006. View at Publisher · View at Google Scholar · View at PubMed
  27. Y. Li, Z. Liu, X. Guo, J. Shu, Z. Chen, and L. Li, “Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro,” Archives of Toxicology, vol. 80, no. 8, pp. 524–532, 2006. View at Publisher · View at Google Scholar · View at PubMed
  28. P. L. Bonate, K. Reith, and S. Weir, “Drug interactions at the renal level: implications for drug development,” Clinical Pharmacokinetics, vol. 34, no. 5, pp. 375–404, 1998. View at Publisher · View at Google Scholar
  29. D. H. Sweet, K. T. Bush, and S. K. Nigam, “The organic anion transporter family: from physiology to ontogeny and the clinic,” American Journal of Physiology, vol. 281, no. 2, pp. F197–F205, 2001.
  30. E. E. Robertson and G. O. Rankin, “Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion,” Pharmacology and Therapeutics, vol. 109, no. 3, pp. 399–412, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. T. Sekine, S. H. Cha, and H. Endou, “The multispecific organic anion transporter (OAT) family,” Pflugers Archiv European Journal of Physiology, vol. 440, no. 3, pp. 337–350, 2000.
  32. A. Pedrotti, J. P. Bonjour, and J. P. Guignard, “Protection from hypoxemia-induced renal dysfunction by the thiophosphate WR-2721,” Kidney International, vol. 41, no. 1, pp. 80–87, 1992.
  33. D. Semama, C. Heumann, and J. P. Guignard, “Protection from hypoxemic renal dysfunction by verapamil and manganese in the rabbit,” Life Sciences, vol. 56, no. 4, pp. 231–239, 1995. View at Publisher · View at Google Scholar
  34. A. Prévot, D. S. Semama, E. Justrabo, J. P. Guignard, A. Escousse, and J. B. Gouyon, “Acute cyclosporine A-induced nephrotoxicity: a rabbit model,” Pediatric Nephrology, vol. 14, no. 5, pp. 370–375, 2000.
  35. A. Prévot, F. Huet, D. S. Semama, J. B. Gouyon, and J. P. Guignard, “Complementary effects of adenosine and angiotensin II in hypoxemia-induced renal dysfunction in the rabbit,” Life Sciences, vol. 71, no. 7, pp. 779–787, 2002. View at Publisher · View at Google Scholar
  36. D. Sun, J. Feng, C. Dai et al., “Role of peritubular capillary loss and hypoxia in progressive tubulointerstitial fibrosis in a rat model of aristolochic acid nephropathy,” American Journal of Nephrology, vol. 26, no. 4, pp. 363–371, 2006. View at Publisher · View at Google Scholar · View at PubMed
  37. L. Yang, X. Li, and H. Wang, “Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis,” Nephrology Dialysis Transplantation, vol. 22, no. 2, pp. 445–456, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. Y. J. Choi, S. Chakraborty, V. Nguyen et al., “Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor,” Human Pathology, vol. 31, no. 12, pp. 1491–1497, 2000. View at Publisher · View at Google Scholar · View at PubMed
  39. F. Huet, J. B. Gouyon, and J. P. Guignard, “Prevention of hypoxemia-induced renal dysfunction by perindoprilat in the rabbit,” Life Sciences, vol. 61, no. 22, pp. 2157–2165, 1997.
  40. V. Pichette, D. Geadah, and P. Du Souich, “Role of plasma protein binding on renal metabolism and dynamics of furosemide in the rabbit,” Drug Metabolism and Disposition, vol. 27, no. 1, pp. 81–85, 1999.
  41. L. S. Costanzo, Physiology, Sauders Elsevier, Philadelphia, Pa, USA, 2006.
  42. J. P. Cosyns, “Aristolochic acid and “Chinese herbs nephropathy”: a review of the evidence to date,” Drug Safety, vol. 26, no. 1, pp. 33–48, 2003. View at Publisher · View at Google Scholar
  43. N. H. Lameire and R. Vanholder, “Pathophysiology of ischaemic acute renal failure,” Best Practice and Research, vol. 18, no. 1, pp. 21–36, 2004. View at Publisher · View at Google Scholar
  44. M. Gaudino and M. F. Levitt, “Inulin space as a measure of extracellular fluid,” American Journal of Physiology, vol. 157, pp. 387–393, 1949.