About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2011 (2011), Article ID 435132, 7 pages
http://dx.doi.org/10.1155/2011/435132
Review Article

The Role of Uridine Adenosine Tetraphosphate in the Vascular System

1Department of Physiology, Georgia Health Sciences University, 1120 Fifteenth Street, CA-3135, Augusta, GA 30912-3000, USA
2Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
3Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, 14049-900 Sao Paulo, SP, Brazil

Received 9 August 2011; Accepted 21 September 2011

Academic Editor: Masahiro Oike

Copyright © 2011 Takayuki Matsumoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Landmesser, B. Hornig, and H. Drexler, “Endothelial function: a critical determinant in atherosclerosis?” Circulation, vol. 109, no. 21, supplement 1, pp. II27–II33, 2004. View at Scopus
  2. M. Félétou and P. M. Vanhoutte, “Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture),” American Journal of Physiology, vol. 291, no. 3, pp. H985–H1002, 2006. View at Publisher · View at Google Scholar
  3. R. O. Cannon III, “Role of nitric oxide in cardiovascular disease: focus on the endothelium,” Clinical Chemistry, vol. 44, no. 8, pp. 1809–1819, 1998. View at Scopus
  4. P. M. Vanhoutte, M. Feletou, and S. Taddei, “Endothelium-dependent contractions in hypertension,” British Journal of Pharmacology, vol. 144, no. 4, pp. 449–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. H. Tang and P. M. Vanhoutte, “Endothelial dysfunction: a strategic target in the treatment of hypertension?” Pflugers Archiv European Journal of Physiology, vol. 459, no. 6, pp. 995–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Barton, “Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis,” Pflugers Archiv European Journal of Physiology, vol. 460, no. 5, pp. 825–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Matsumoto, T. Kobayashi, and K. Kamata, “Relationships among ET-1, PPARγ, oxidative stress and endothelial dysfunction in diabetic animals,” Journal of Smooth Muscle Research, vol. 44, no. 2, pp. 41–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Virdis, L. Ghiadoni, and S. Taddei, “Human endothelial dysfunction: EDCFs,” Pflugers Archiv, vol. 459, no. 6, pp. 1015–1023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Versari, E. Daghini, A. Virdis, L. Ghiadoni, and S. Taddei, “Endothelium-dependent contractions and endothelial dysfunction in human hypertension,” British Journal of Pharmacology, vol. 157, no. 4, pp. 527–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Vanhoutte, H. Shimokawa, E. H. Tang, and M. Feletou, “Endothelial dysfunction and vascular disease,” Acta Physiologica, vol. 196, no. 2, pp. 193–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Schiffrin, “A critical review of the role of endothelial factors in the pathogenesis of hypertension,” Journal of Cardiovascular Pharmacology, vol. 38, supplement 2, pp. S3–S6, 2002. View at Scopus
  12. Q. Chen, E. E. Kim, K. Elio, et al., “The Role of tetrahydrobiopterin and dihydrobiopterin in ischemia/reperfusion injury when given at reperfusion,” Advances in Pharmacological Sciences, vol. 2010, Article ID 963914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. C. Tostes, Z. B. Fortes, G. E. Callera et al., “Endothelin, sex and hypertension,” Clinical Science, vol. 114, no. 1-2, pp. 85–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Jankowski, M. Tölle, R. Vanholder et al., “Uridine adenosine tetraphosphate: a novel endothelium-derived vasoconstrictive factor,” Nature Medicine, vol. 11, no. 2, pp. 223–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Burnstock, “Purinergic signaling and vascular cell proliferation and death,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 3, pp. 364–373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Burnstock, “Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells,” Pharmacological Reports, vol. 60, no. 1, pp. 12–20, 2008. View at Scopus
  17. G. Burnstock, “Purinergic regulation of vascular tone and remodelling,” Autonomic and Autacoid Pharmacology, vol. 29, no. 3, pp. 63–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Erb, Z. Liao, C. I. Seye, and G. A. Weisman, “P2 receptors: intracellular signaling,” Pflugers Archiv, vol. 452, no. 5, pp. 552–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Guan, D. A. Osmond, and E. W. Inscho, “P2X receptors as regulators of the renal microvasculature,” Trends in Pharmacological Sciences, vol. 28, no. 12, pp. 646–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Jankowski, M. van der Giet, H. Mischak, M. Morgan, W. Zidek, and J. Jankowski, “Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system,” British Journal of Pharmacology, vol. 157, no. 7, pp. 1142–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Erlinge and G. Burnstock, “P2 receptors in cardiovascular regulation and disease,” Purinergic Signalling, vol. 4, no. 1, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Gabriëls, K. H. Rahn, E. Schlatter, and M. Steinmetz, “Mesenteric and renal vascular effects of diadenosine polyphosphates (APnA),” Cardiovascular Research, vol. 56, no. 1, pp. 22–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. N. A. Flores, B. M. Stavrou, and D. J. Sheridan, “The effects of diadenosine polyphosphates on the cardiovascular system,” Cardiovascular Research, vol. 42, no. 1, pp. 15–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. M. van der Giet, T. Westhoff, O. Cinkilic et al., “The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P2X-receptors in the isolated perfused rat kidney,” British Journal of Pharmacology, vol. 132, no. 2, pp. 467–474, 2001. View at Scopus
  25. B. B. Fredholm, A. P. IJzerman, K. A. Jacobson, J. Linden, and C. E. Müller, “International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update,” Pharmacological Reviews, vol. 63, no. 1, pp. 1–34, 2011. View at Publisher · View at Google Scholar
  26. G. Burnstock, “Purine and pyrimidine receptors,” Cellular and Molecular Life Sciences, vol. 64, no. 12, pp. 1471–1483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to receptors and channels (GRAC), 4th edition,” British Journal of Pharmacology, vol. 158, supplement 1, p. S1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. P. Abbracchio, G. Burnstock, J. M. Boeynaems et al., “International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy,” Pharmacological Reviews, vol. 58, no. 3, pp. 281–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. I. von Kügelgen, “Pharmacological profiles of cloned mammalian P2Y-receptor subtypes,” Pharmacology & Therapeutics, vol. 110, no. 3, pp. 415–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Surprenant and R. Alan North, “Signaling at purinergic P2X receptors,” Annual Review of Physiology, vol. 71, pp. 333–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Linder, M. Tumbri, F. F. Linder, R. C. Webb, and R. Leite, “Uridine adenosine tetraphosphate induces contraction and relaxation in rat aorta,” Vascular Pharmacology, vol. 48, no. 4–6, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. F. Bruns, “Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts,” Biochemical Pharmacology, vol. 30, no. 4, pp. 325–333, 1981. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Damer, B. Niebel, S. Czeche et al., “NF279: a novel potent and selective antagonist of P2X receptor-mediated responses,” European Journal of Pharmacology, vol. 350, no. 1, pp. R5–R6, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. P. Stork and T. M. Cocks, “Pharmacological reactivity of human epicardial coronary arteries: phasic and tonic responses to vasoconstrictor agents differentiated by nifedipine,” British Journal of Pharmacology, vol. 113, no. 4, pp. 1093–1098, 1994. View at Scopus
  35. S. Narumiya, T. Ishizaki, and M. Uehata, “Use and properties of ROCK-specific inhibitor Y-27632,” Methods in Enzymology, vol. 325, pp. 273–284, 2000. View at Scopus
  36. Y. Gui, M. P. Walsh, V. Jankowski, J. Jankowski, and X. L. Zheng, “Up4A stimulates endothelium-independent contraction of isolated rat pulmonary artery,” American Journal of Physiology, vol. 294, no. 4, pp. L733–L738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Tölle, M. Schuchardt, A. Wiedon et al., “Differential effects of uridine adenosine tetraphosphateon purinoceptors in the rat isolated perfused kidney,” British Journal of Pharmacology, vol. 161, no. 3, pp. 530–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Jankowski, A. Patzak, S. Herget-Rosenthal et al., “Uridine adenosine tetraphosphate acts as an autocrine hormone affecting glomerular filtration rate,” Journal of Molecular Medicine, vol. 86, no. 3, pp. 333–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Chan, R. J. Unwin, M. Bardini et al., “Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys,” American Journal of Physiology, vol. 274, no. 4, pp. F799–F804, 1998. View at Scopus
  40. E. W. Inscho, A. K. Cook, J. D. Imig, C. Vial, and R. J. Evans, “Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1895–1905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. P. B. Hansen, A. Hristovska, H. Wolff, P. Vanhoutte, B. L. Jensen, and P. Bie, “Uridine adenosine tetraphosphate affects contractility of mouse aorta and decreases blood pressure in conscious rats and mice,” Acta Physiologica, vol. 200, no. 2, pp. 171–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Jankowski, A. A. Meyer, P. Schlattmann et al., “Increased uridine adenosine tetraphosphate concentrations in plasma of juvenile hypertensives,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 8, pp. 1776–1781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Matsumoto, R. C. Tostes, and R. C. Webb, “Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats,” American Journal of Physiology, vol. 301, no. 2, pp. H409–H417, 2011. View at Publisher · View at Google Scholar
  44. V. V. Lima, F. R. Giachini, F. S. Carneiro et al., “O-glcnacylation contributes to augmented vascular reactivity induced by endothelin 1,” Hypertension, vol. 55, no. 1, pp. 180–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. V. V. Lima, F. R. Giachini, H. Choi et al., “Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation,” Hypertension, vol. 53, no. 2, pp. 166–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. F. R. Giachini, J. C. Sullivan, V. V. Lima et al., “Extracellular signal-regulated kinase 1/2 activation, via downregulation of mitogen-activated protein kinase phosphatase 1, mediates sex differences in desoxycorticosterone acetate-salt hypertension vascular reactivity,” Hypertension, vol. 55, no. 1, pp. 172–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Szasz and S. W. Watts, “Uric acid does not affect the acetylcholine-induced relaxation of aorta from normotensive and deoxycorticosterone acetate-salt hypertensive rats,” The Journal of Pharmacology and Experimental Therapeutics, vol. 333, no. 3, pp. 758–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. F. R. Giachini, S. M. Zemse, F. S. Carneiro et al., “Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway,” American Journal of Physiology, vol. 296, no. 2, pp. H489–H496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Matsumoto, K. Ishida, N. Nakayama, T. Kobayashi, and K. Kamata, “Involvement of NO and MEK/ERK pathway in enhancement of endothelin-1-induced mesenteric artery contraction in later-stage type 2 diabetic Goto-Kakizaki rat,” American Journal of Physiology, vol. 296, no. 5, pp. H1388–H1397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Kobayashi, T. Nogami, K. Taguchi, T. Matsumoto, and K. Kamata, “Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK,” British Journal of Pharmacology, vol. 155, no. 7, pp. 974–983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Ö. Braun, D. Lu, N. Aroonsakool, and P. A. Insel, “Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 3, pp. 362–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Matsumoto, R. C. Tostes, and R. C. Webb, “Alterations in vasoconstrictor responses to the endothelium-derived contracting factor uridine adenosine tetraphosphate are region specific in DOCA-salt hypertensive rats,” Pharmacological Research. In press.
  53. Y. Gui, G. He, M. P. Walsh, and X.-L. Zheng, “Signaling mechanisms mediating Up4A-induced proliferation of human vascular smooth muscle cells,” Journal of Cardiovascular Pharmacology. In press. View at Publisher · View at Google Scholar
  54. S. W. Rabkin, “The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease,” Nature Clinical Practice Cardiovascular Medicine, vol. 6, no. 3, pp. 192–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Libby, P. M. Ridker, and G. K. Hansson, “Inflammation in atherosclerosis. From pathophysiology to practice,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar
  56. T. Matsumoto, T. Kobayashi, and K. Kamata, “Role of lysophosphatidylcholine (LPC) in atherosclerosis,” Current Medicinal Chemistry, vol. 14, no. 30, pp. 3209–3220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Ross, “Atheroslerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999.
  58. M. Schuchardt, J. Prüfer, N. Prüfer et al., “The endothelium-derived contracting factor uridine adenosine tetraphosphate induces P2Y2-mediated pro-inflammatory signaling by monocyte chemoattractant protein-1 formation,” Journal of Molecular Medicine, vol. 89, no. 8, pp. 799–810, 2011. View at Publisher · View at Google Scholar
  59. M. Simionescu, “Implications of early structural-functional changes in the endothelium for vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 266–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. I. F. Charo and R. Taub, “Anti-inflammatory therapeutics for the treatment of atherosclerosis,” Nature Reviews Drug Discovery, vol. 10, no. 5, pp. 365–376, 2011. View at Publisher · View at Google Scholar
  61. I. F. Charo and R. M. Ransohoff, “The many roles of chemokines and chemokine receptors in inflammation,” The New England Journal of Medicine, vol. 354, no. 6, pp. 610–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Katsuyama, “NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles,” Journal of Pharmacological Sciences, vol. 114, no. 2, pp. 134–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. R. M. Touyz and A. M. Briones, “Reactive oxygen species and vascular biology: implications in human hypertension,” Hypertension Research, vol. 34, no. 1, pp. 5–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. G. R. Drummond, S. Selemidis, K. K. Griendling, and C. G. Sobey, “Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets,” Nature Reviews Drug Discovery, vol. 10, no. 6, pp. 453–471, 2011. View at Publisher · View at Google Scholar
  65. E. Schepers, G. Glorieux, V. Jankowski, A. Dhondt, J. Jankowski, and R. Vanholder, “Dinucleoside polyphosphates: newly detected uraemic compounds with an impact on leucocyte oxidative burst,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2636–2644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Zalba, A. Fortuño, and J. Díez, “Oxidative stress and atherosclerosis in early chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 21, no. 10, pp. 2686–2690, 2006. View at Publisher · View at Google Scholar · View at Scopus