About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2011 (2011), Article ID 572634, 13 pages
http://dx.doi.org/10.1155/2011/572634
Research Article

Oxidative Stress in Neurodegeneration

1Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
2Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Bethesda, MD 20892, USA

Received 20 April 2011; Accepted 22 June 2011

Academic Editor: Donard S. Dwyer

Copyright © 2011 Varsha Shukla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Beal, “Mitochondria take center stage in aging and neurodegeneration,” Annals of Neurology, vol. 58, no. 4, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. T. Hancock, R. Desikan, and S. J. Neill, “Role of reactive oxygen species in cell signalling pathways,” Biochemical Society Transactions, vol. 29, no. 2, pp. 345–350, 2001. View at Publisher · View at Google Scholar
  3. B. Halliwell, “Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?” Lancet, vol. 344, no. 8924, pp. 721–724, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. B. P. Yu, “Cellular defenses against damage from reactive oxygen species,” Physiological Reviews, vol. 74, no. 1, pp. 139–162, 1994. View at Scopus
  5. H. E. Poulsen, H. Prieme, and S. Loft, “Role of oxidative DNA damage in cancer initiation and promotion,” European Journal of Cancer Prevention, vol. 7, no. 1, pp. 9–16, 1998. View at Scopus
  6. B. Uday, D. Dipak, and B. K. Ranajit, “Reactive oxygen species: oxidative damage and pathogenesis,” Current Science, vol. 77, no. 5, pp. 658–666, 1999. View at Scopus
  7. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. O. D. Saugstad, “Chronic lung disease: the role of oxidative stress,” Biology of the Neonate, vol. 74, no. 1, pp. 21–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Kennedy, V. A. Spence, M. McLaren, A. Hill, C. Underwood, and J. J. F. Belch, “Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms,” Free Radical Biology and Medicine, vol. 39, no. 5, pp. 584–589, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. H. Trachtenberg and J. M. Hare, “Biomarkers of oxidative stress in heart failure,” Heart Failure Clinics, vol. 5, no. 4, pp. 561–577, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Rodríguez-Yáñez and J. Castillo, “Role of inflammatory markers in brain ischemia,” Current Opinion in Neurology, vol. 21, no. 3, pp. 353–357, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. Giugliano, A. Ceriello, and G. Paolisso, “Oxidative stress and diabetic vascular complications,” Diabetes Care, vol. 19, no. 3, pp. 257–267, 1996. View at Scopus
  13. J. H. Kinoshita, “Aldose reductase in the diabetic eye. XLIII Edward Jackson Memorial Lecture,” American Journal of Ophthalmology, vol. 102, no. 6, pp. 685–692, 1986. View at Scopus
  14. T. J. Lyons, “Lipoprotein glycation and its metabolic consequences,” Diabetes, vol. 41, no. 2, pp. 67–73, 1992. View at Scopus
  15. A. Bowie, D. Owens, P. Collins, A. Johnson, and G. H. Tomkin, “Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?” Atherosclerosis, vol. 102, no. 1, pp. 63–67, 1993. View at Scopus
  16. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Scopus
  17. A. Nunomura, K. Honda, A. Takeda et al., “Oxidative damage to RNA in neurodegenerative diseases,” Journal of Biomedicine and Biotechnology, vol. 2006, Article ID 82323, 6 pages, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. Perry, A. Nunomura, K. Hirai et al., “Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?” Free Radical Biology and Medicine, vol. 33, no. 11, pp. 1475–1479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Scopus
  20. R. J. O'Brien and P. C. Wong, “Amyloid precursor protein processing and Alzheimer’s disease,” Annual Review of Neuroscience, vol. 22, no. 36, pp. 185–204, 2010.
  21. Y. L. Zheng, B. S. Li, N. D. Amin, W. Albers, and H. C. Pant, “A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells,” European Journal of Biochemistry, vol. 269, no. 18, pp. 4427–4434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Hanger, J. C. Betts, T. L. F. Loviny, W. P. Blackstock, and B. H. Anderton, “New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry,” Journal of Neurochemistry, vol. 71, no. 6, pp. 2465–2476, 1998. View at Scopus
  23. W. H. Stoothoff and G. V. W. Johnson, “Tau phosphorylation: physiological and pathological consequences,” Biochimica et Biophysica Acta, vol. 1739, no. 2, pp. 280–297, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. P. Rudrabhatla, Y. L. Zheng, N. D. Amin, S. Kesavapany, W. Albers, and H. C. Pant, “Pin1-dependent prolyl isomerization modulates the stress-induced phosphorylation of high molecular weight neurofilament protein,” Journal of Biological Chemistry, vol. 283, no. 39, pp. 26737–26747, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. Lim, M. Balastik, T. H. Lee et al., “Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1877–1889, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Y. C. Liou, A. Sun, A. Ryo et al., “Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration,” Nature, vol. 424, no. 6948, pp. 556–561, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Iqbal, T. Zaidi, C. Bancher, and I. Grundke-Iqbal, “Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation,” FEBS Letters, vol. 349, no. 1, pp. 104–108, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Iqbal, A. Del C. Alonso, S. Chen et al., “Tau pathology in Alzheimer disease and other tauopathies,” Biochimica et Biophysica Acta, vol. 1739, no. 2, pp. 198–210, 2005. View at Publisher · View at Google Scholar · View at PubMed
  29. S. Keck, R. Nitsch, T. Grune, and O. Ullrich, “Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease,” Journal of Neurochemistry, vol. 85, no. 1, pp. 115–122, 2003. View at Scopus
  30. P. Cras, M. A. Smith, P. L. Richey, S. L. Siedlak, P. Mulvihill, and G. Perry, “Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross linking in Alzheimer disease,” Acta Neuropathologica, vol. 89, no. 4, pp. 291–295, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Smith, “Alzheimer disease,” International Review of Neurobiology, vol. 42, pp. 1–54, 1998. View at Scopus
  32. R. S. Shah, H.-G. Lee, Z. Xiongwei, G. Perry, M. A. Smith, and R. J. Castellani, “Current approaches in the treatment of Alzheimer's disease,” Biomedicine and Pharmacotherapy, vol. 62, no. 4, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. L. P. Rowland and N. A. Shneider, “Amyotrophic lateral sclerosis,” New England Journal of Medicine, vol. 344, no. 22, pp. 1688–1700, 2001. View at Publisher · View at Google Scholar · View at PubMed
  34. S. Kikuchi, K. Shinpo, A. Ogata et al., “Detection of Nε-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 3, no. 2, pp. 63–68, 2002.
  35. W. A. Pedersen, W. Fu, J. N. Keller et al., “Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients,” Annals of Neurology, vol. 44, no. 5, pp. 819–824, 1998.
  36. R. J. Ferrante, S. E. Browne, L. A. Shinobu et al., “Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 69, no. 5, pp. 2064–2074, 1997.
  37. S. C. Barber, R. J. Mead, and P. J. Shaw, “Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1051–1067, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. L. M. Sayre, G. Perry, and M. A. Smith, “Oxidative stress and neurotoxicity,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 172–188, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. M. Mattiazzi, M. D'Aurelio, C. D. Gajewski et al., “Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 29626–29633, 2002. View at Publisher · View at Google Scholar · View at PubMed
  40. J. Kong and Z. Xu, “Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1,” Journal of Neuroscience, vol. 18, no. 9, pp. 3241–3250, 1998.
  41. J. Liu, C. Lillo, P. A. Jonsson et al., “Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria,” Neuron, vol. 43, no. 1, pp. 5–17, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. A. C. Estévez, J. P. Crow, J. B. Sampson et al., “Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase,” Science, vol. 286, no. 5449, pp. 2498–2500, 1999. View at Publisher · View at Google Scholar
  43. M. Mattiazzi, M. D'Aurelio, C. D. Gajewski et al., “Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 29626–29633, 2002. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Rakhit and A. Chakrabartty, “Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1025–1037, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. A. Nordlund and M. Oliveberg, “Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: parallels to precursors in amyloid disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10218–10223, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. E. Kabashi and H. D. Durham, “Failure of protein quality control in amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1038–1050, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. P. J. Hart, “Pathogenic superoxide dismutase structure, folding, aggregation and turnover,” Current Opinion in Chemical Biology, vol. 10, no. 2, pp. 131–138, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. A. Okado-Matsumoto and I. Fridovich, “Amyotrophic lateral sclerosis: a proposed mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 9010–9014, 2002. View at Publisher · View at Google Scholar · View at PubMed
  49. P. Pasinelli, M. E. Belford, N. Lennon et al., “Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria,” Neuron, vol. 43, no. 1, pp. 19–30, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Chang, Q. Kong, X. Shan et al., “Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS,” PLoS ONE, vol. 3, no. 8, Article ID e2849, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. M. J. Strong, “The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS),” Journal of the Neurological Sciences, vol. 288, no. 1-2, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Neumann, D. M. Sampathu, L. K. Kwong et al., “Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Science, vol. 314, no. 5796, pp. 130–133, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. I. Wegorzewska, S. Bell, N. J. Cairns, T. M. Miller, and R. H. Baloh, “TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 44, pp. 18809–18814, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. M. A. Gitcho, E. H. Bigio, M. Mishra et al., “TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy,” Acta Neuropathologica, vol. 118, no. 5, pp. 633–645, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. B. D. Freibaum, R. K. Chitta, A. A. High, and J. P. Taylor, “Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery,” Journal of Proteome Research, vol. 9, no. 2, pp. 1104–1120, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. C. Colombrita, E. Zennaro, C. Fallini et al., “TDP-43 is recruited to stress granules in conditions of oxidative insult,” Journal of Neurochemistry, vol. 111, no. 4, pp. 1051–1061, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. C. Lagier-Tourenne and D. W. Cleveland, “Rethinking ALS: the FUS about TDP-43,” Cell, vol. 136, no. 6, pp. 1001–1004, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. Y. F. Xu, T. F. Gendron, Y. J. Zhang et al., “Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice,” Journal of Neuroscience, vol. 30, no. 32, pp. 10851–10859, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. P. Jenner, Hunot, Olanow et al., “Oxidative stress in Parkinson's disease,” Annals of Neurology, vol. 53, no. 3, pp. S26–S38, 2003. View at Publisher · View at Google Scholar · View at PubMed
  60. A. Kikuchi, A. Takeda, H. Onodera et al., “Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy,” Neurobiology of Disease, vol. 9, no. 2, pp. 244–248, 2002. View at Publisher · View at Google Scholar · View at PubMed
  61. P. G. Galloway, P. Mulvihill, and G. Perry, “Filaments of Lewy bodies contain insoluble cytoskeletal elements,” American Journal of Pathology, vol. 140, no. 4, pp. 809–822, 1992.
  62. N. Hattori and P. Y. Mizuno, “Pathogenetic mechanisms of parkin in Parkinson's disease,” Lancet, vol. 364, no. 9435, pp. 722–724, 2004. View at Publisher · View at Google Scholar · View at PubMed
  63. A. Wood-Kaczmar, S. Gandhi, and N. W. Wood, “Understanding the molecular causes of Parkinson's disease,” Trends in Molecular Medicine, vol. 12, no. 11, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. R. Castellani, K. Hirai, G. Aliev et al., “Role of mitochondrial dysfunction in Alzheimer's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 357–360, 2002. View at Publisher · View at Google Scholar · View at PubMed
  65. R. M. Chalmers, M. Brockington, R. S. Howard, B. R. F. Lecky, J. A. Morgan-Hughes, and A. E. Harding, “Mitochondrial encephalopathy with multiple mitochondrial DNA deletions: a report of two families and two sporadic cases with unusual clinical and neuropathological features,” Journal of the Neurological Sciences, vol. 143, no. 1-2, pp. 41–45, 1996. View at Publisher · View at Google Scholar
  66. G. Siciliano, M. Mancuso, R. Ceravolo, V. Lombardi, A. Iudice, and U. Bonuccelli, “Mitochondrial DNA rearrangements in young onset parkinsonismml: two case reports,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 5, pp. 685–687, 2001. View at Publisher · View at Google Scholar
  67. I. F. M. De Coo, W. O. Renier, W. Ruitenbeek et al., “A 4-base pair deletion in the mitochondrial cytochrome b gene associated with Parkinsonism/MELAS overlap syndrome,” Annals of Neurology, vol. 45, no. 1, pp. 130–133, 1999. View at Publisher · View at Google Scholar
  68. D. Thyagarajan, S. Bressman, C. Bruno et al., “A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy,” Annals of Neurology, vol. 48, no. 5, pp. 730–736, 2000. View at Publisher · View at Google Scholar
  69. W. Zhou, M. S. Huribert, J. Schaack, K. N. Prasad, and C. R. Freed, “Overexpression of human α-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells,” Brain Research, vol. 866, no. 1-2, pp. 33–43, 2000. View at Publisher · View at Google Scholar
  70. M. Lee, D. H. Hyun, B. Halliwell, and P. Jenner, “Effect of the overexpression of wild-type or mutant α-synuclein on cell susceptibility to insult,” Journal of Neurochemistry, vol. 76, no. 4, pp. 998–1009, 2001. View at Publisher · View at Google Scholar
  71. B. I. Giasson, M. S. Forman, M. Higuchi et al., “Initiation and synergistic fibrillization of tau and alpha-synuctein,” Science, vol. 300, no. 5619, pp. 636–640, 2003. View at Publisher · View at Google Scholar · View at PubMed
  72. E. Iseki, W. Marui, K. Kosaka, and K. Uéda, “Frequent coexistence of Lewy bodies and neurofibrillary tangles in the same neurons of patients with diffuse Lewy body disease,” Neuroscience Letters, vol. 265, no. 1, pp. 9–12, 1999. View at Publisher · View at Google Scholar
  73. V. M. Y. Lee, B. I. Giasson, and J. Q. Trojanowski, “More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases,” Trends in Neurosciences, vol. 27, no. 3, pp. 129–134, 2004. View at Publisher · View at Google Scholar · View at PubMed
  74. T. M. Dawson and V. L. Dawson, “Molecular pathways of neurodegeneration in Parkinson's disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at PubMed
  75. A. H. Schapira, “Causes of neuronal death in Parkinson's disease,” Advances in neurology, vol. 86, pp. 155–162, 2001.
  76. M. F. Beal, “Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 4, pp. 381–386, 2004. View at Publisher · View at Google Scholar · View at PubMed
  77. P. M. Keeney, J. Xie, R. A. Capaldi, and J. P. Bennett Jr., “Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled,” Journal of Neuroscience, vol. 26, no. 19, pp. 5256–5264, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. J. Sanchez-Ramos, E. Overvik, and B. Ames, “A marker of oxyradical-mediated DNA damage (8-hydroxy-2-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain,” Neurodegeneration, vol. 3, pp. 197–204, 1994.
  79. J. Zhang, G. Perry, M. A. Smith et al., “Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons,” American Journal of Pathology, vol. 154, no. 5, pp. 1423–1429, 1999.
  80. Z. I. Alam, S. E. Daniel, A. J. Lees, D. C. Marsden, P. Jenner, and B. Halliwell, “A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease,” Journal of Neurochemistry, vol. 69, no. 3, pp. 1326–1329, 1997.
  81. E. Floor and M. G. Wetzel, “Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay,” Journal of Neurochemistry, vol. 70, no. 1, pp. 268–275, 1998.
  82. P. F. Good, A. Hsu, P. Werner, D. P. Perl, and C. Warren Olanow, “Protein nitration in Parkinson's disease,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 4, pp. 338–342, 1998.
  83. R. Castellani, M. A. Smith, P. L. Richey, and G. Perry, “Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease,” Brain Research, vol. 737, no. 1-2, pp. 195–200, 1996. View at Publisher · View at Google Scholar
  84. A. Yoritaka, N. Hattori, K. Uchida, M. Tanaka, E. R. Stadtman, and Y. Mizuno, “Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 7, pp. 2696–2701, 1996. View at Publisher · View at Google Scholar
  85. R. J. Castellani, G. Perry, S. L. Siedlak et al., “Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans,” Neuroscience Letters, vol. 319, no. 1, pp. 25–28, 2002. View at Publisher · View at Google Scholar
  86. R. A. Fredenburg, C. Rospigliosi, R. K. Meray et al., “The impact of the E46K mutation on the properties of α-synuclein in its monomelic and oligomeric states,” Biochemistry, vol. 46, no. 24, pp. 7107–7118, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. D. D. Song, C. W. Shults, A. Sisk, E. Rockenstein, and E. Masliah, “Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP,” Experimental Neurology, vol. 186, no. 2, pp. 158–172, 2004. View at Publisher · View at Google Scholar · View at PubMed
  88. P. Klivenyi, D. Siwek, G. Gardian et al., “Mice lacking alpha-synuclein are resistant to mitochondrial toxins,” Neurobiology of Disease, vol. 21, no. 3, pp. 541–548, 2006. View at Publisher · View at Google Scholar · View at PubMed
  89. K. S. P. McNaught, R. Belizaire, O. Isacson, P. Jenner, and C. W. Olanow, “Altered proteasomal function in sporadic Parkinson's disease,” Experimental Neurology, vol. 179, no. 1, pp. 38–46, 2003. View at Publisher · View at Google Scholar
  90. Y. Pesah, T. Pham, H. Burgess et al., “Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress,” Development, vol. 131, no. 9, pp. 2183–2194, 2004. View at Publisher · View at Google Scholar · View at PubMed
  91. J. J. Palacino, D. Sagi, M. S. Goldberg et al., “Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice,” Journal of Biological Chemistry, vol. 279, no. 18, pp. 18614–18622, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. V. Bonifati, P. Rizzu, M. J. Van Baren et al., “Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism,” Science, vol. 299, no. 5604, pp. 256–259, 2003. View at Publisher · View at Google Scholar · View at PubMed
  93. R. H. Kim, P. D. Smith, H. Aleyasin et al., “Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyrindine (MPTP) and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5215–5220, 2005. View at Publisher · View at Google Scholar · View at PubMed
  94. M. C. Meulener, K. Xu, L. Thompson, H. Ischiropoulos, and N. M. Bonini, “Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12517–12522, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. E. M. Valente, P. M. Abou-Sleiman, V. Caputo et al., “Hereditary early-onset Parkinson's disease caused by mutations in PINK1,” Science, vol. 304, no. 5674, pp. 1158–1160, 2004. View at Publisher · View at Google Scholar · View at PubMed
  96. A. Petit, T. Kawarai, E. Paitel et al., “Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations,” Journal of Biological Chemistry, vol. 280, no. 40, pp. 34025–34032, 2005. View at Publisher · View at Google Scholar · View at PubMed
  97. D. C. Jones, P. G. Gunasekar, J. L. Borowitz, and G. E. Isom, “Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells,” Journal of Neurochemistry, vol. 74, no. 6, pp. 2296–2304, 2000. View at Publisher · View at Google Scholar
  98. A. Napolitano, O. Crescenzi, A. Pezzella, and G. Prota, “Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine,” Journal of Medicinal Chemistry, vol. 38, no. 6, pp. 917–922, 1995.
  99. S. Z. Imam, J. El-Yazal, G. D. Newport et al., “Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts,” Annals of the New York Academy of Sciences, vol. 939, pp. 366–380, 2001.
  100. M. E. Götz, K. Double, M. Gerlach, M. B. H. Youdim, and P. Riederer, “The relevance of iron in the pathogenesis of Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 1012, pp. 193–208, 2004. View at Publisher · View at Google Scholar
  101. D. Kaur and J. Andersen, “Does cellular iron dysregulation play a causative role in Parkinson's disease?” Ageing Research Reviews, vol. 3, no. 3, pp. 327–343, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. S. Davies and D. B. Ramsden, “Huntington's disease,” Journal of Clinical Pathology, vol. 54, no. 6, pp. 409–413, 2001.
  103. J. F. Gusella, N. S. Wexler, and P. M. Conneally, “A polymorphic DNA marker genetically linked to Huntington's disease,” Nature, vol. 306, no. 5940, pp. 234–238, 1983.
  104. A. C. Rego and C. R. Oliveira, “Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases,” Neurochemical Research, vol. 28, no. 10, pp. 1563–1574, 2003. View at Publisher · View at Google Scholar
  105. J. F. Gusella and M. E. McDonald, “Huntington’s disease,” Seminars in Cell Biology, vol. 6, pp. 21–28, 1995.
  106. S. E. Browne, A. C. Bowling, U. MacGarvey et al., “Oxidative damage and metabolic dysfunction in huntington's disease: selective vulnerability of the basal ganglia,” Annals of Neurology, vol. 41, no. 5, pp. 646–653, 1997. View at Publisher · View at Google Scholar · View at PubMed
  107. B. G. Jenkins, W. J. Koroshetz, M. F. Beal, and B. R. Rosen, “Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy,” Neurology, vol. 43, no. 12 I, pp. 2689–2695, 1993.
  108. W. J. Koroshetz, B. G. Jenkins, B. R. Rosen, and M. Flint Beal, “Energy metabolism defects in Huntington's disease and effects of coenzyme Q10,” Annals of Neurology, vol. 41, no. 2, pp. 160–165, 1997. View at Publisher · View at Google Scholar · View at PubMed
  109. W. D. Parker, S. J. Boyson, A. S. Luder, and J. K. Parks, “Evidence for a defect in NADH:ubiquinone oxidoreductase (complex I) in Huntington's disease,” Neurology, vol. 40, no. 8, pp. 1231–1234, 1990.
  110. J. Butterworth, C. M. Yates, and G. P. Reynolds, “Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and γ-glutamyl transpeptidase in post-mortem brain from Huntington's disease and agonal cases,” Journal of the Neurological Sciences, vol. 67, no. 2, pp. 161–171, 1985. View at Publisher · View at Google Scholar
  111. V. M. Mann, J. M. Cooper, F. Javoy-Agid, Y. Agid, P. Jenner, and A. H.V. Schapira, “Mitochondrial function and parental sex effect in Huntington's disease,” Lancet, vol. 336, no. 8717, p. 749, 1990.
  112. H. H. Goebel, R. Heipertz, and W. Scholz, “Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies,” Neurology, vol. 28, no. 1, pp. 23–31, 1978.
  113. G. Gárdián and L. Vécsei, “Huntington's disease: pathomechanism and therapeutic perspectives,” Journal of Neural Transmission, vol. 111, no. 10-11, pp. 1485–1494, 2004. View at Publisher · View at Google Scholar · View at PubMed
  114. P. Del Hoyo, A. García-Redondo, F. De Bustos et al., “Oxidative stress in skin fibroblasts cultures of patients with Huntington's disease,” Neurochemical Research, vol. 31, no. 9, pp. 1103–1109, 2006. View at Publisher · View at Google Scholar · View at PubMed
  115. T. Milakovic and G. V. W. Johnson, “Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin,” Journal of Biological Chemistry, vol. 280, no. 35, pp. 30773–30782, 2005. View at Publisher · View at Google Scholar · View at PubMed
  116. B.-S. Li, L. Zhang, J. Gu, N. D. Amin, and H. C. Pant, “Integrin α1β1-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation,” Journal of Neuroscience, vol. 20, no. 16, pp. 6055–6062, 2000.
  117. D. S. Smith and L. H. Tsai, “Cdk5 behind the wheel: a role in trafficking and transport?” Trends in Cell Biology, vol. 12, no. 1, pp. 28–36, 2002. View at Publisher · View at Google Scholar
  118. M. S. Lee, Y. T. Kwon, M. Li, J. Peng, R. M. Friedlander, and L. H. Tsai, “Neurotoxicity induces cleavage of p35 to p25 by calpain,” Nature, vol. 405, no. 6784, pp. 360–364, 2000. View at Publisher · View at Google Scholar · View at PubMed
  119. R. Dhavan and L. H. Tsai, “A decade of CDK5,” Nature Reviews Molecular Cell Biology, vol. 2, no. 10, pp. 749–759, 2001. View at Publisher · View at Google Scholar · View at PubMed
  120. N. D. Amin, W. Albers, and H. C. Pant, “Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35,” Journal of Neuroscience Research, vol. 67, no. 3, pp. 354–362, 2002. View at Publisher · View at Google Scholar · View at PubMed
  121. L. H. Tsai, I. Delalle, V. S. Caviness, T. Chae, and E. Harlow, “p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5,” Nature, vol. 371, no. 6496, pp. 419–423, 1994. View at Publisher · View at Google Scholar · View at PubMed
  122. G. N. Patrick, L. Zukerberg, M. Nikolic, S. De La Monte, P. Dikkes, and L. H. Tsai, “Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration,” Nature, vol. 402, no. 6762, pp. 615–622, 1999. View at Publisher · View at Google Scholar · View at PubMed
  123. M. S. Lee, Y. T. Kwon, M. Li, J. Peng, R. M. Friedlander, and L. H. Tsai, “Neurotoxicity induces cleavage of p35 to p25 by calpain,” Nature, vol. 405, no. 6784, pp. 360–364, 2000. View at Publisher · View at Google Scholar · View at PubMed
  124. P. Strocchi, A. Pession, and B. Dozza, “Up-regulation of cDK5/p35 by oxidative stress in human neuroblastoma IMR-32 cells,” Journal of Cellular Biochemistry, vol. 88, no. 4, pp. 758–765, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. J. C. Cruz and L. H. Tsai, “Cdk5 deregulation in the pathogenesis of Alzheimer's disease,” Trends in Molecular Medicine, vol. 10, no. 9, pp. 452–458, 2004. View at Publisher · View at Google Scholar · View at PubMed
  126. R. A. Quintanilla, D. I. Orellana, C. González-Billault, and R. B. Maccioni, “Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway,” Experimental Cell Research, vol. 295, no. 1, pp. 245–257, 2004. View at Publisher · View at Google Scholar · View at PubMed
  127. T. B. Shea, Y. L. Zheng, D. Ortiz, and H. C. Pant, “Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress,” Journal of Neuroscience Research, vol. 76, no. 6, pp. 795–800, 2004. View at Publisher · View at Google Scholar · View at PubMed
  128. M. Kitazawa, S. Oddo, T. R. Yamasaki, K. N. Green, and F. M. LaFerla, “Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease,” Journal of Neuroscience, vol. 25, no. 39, pp. 8843–8853, 2005. View at Publisher · View at Google Scholar · View at PubMed
  129. H. Patzke and L. H. Tsai, “Cdk5 sinks into ALS,” Trends in Neurosciences, vol. 25, no. 1, pp. 8–10, 2002. View at Publisher · View at Google Scholar
  130. H. C. Tseng, Y. Zhou, Y. Shen, and L. H. Tsai, “A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains,” FEBS Letters, vol. 523, no. 1–3, pp. 58–62, 2002. View at Publisher · View at Google Scholar
  131. M. S. Lee and L. H. Tsai, “Cdk5: one of the links between senile plaques and neurofibrillary tangles?” Journal of Alzheimer's Disease, vol. 5, no. 2, pp. 127–137, 2003.
  132. S. M. De La Monte, N. Ganju, N. Feroz et al., “Oxygen free radical injury is sufficient to cause some Alzheimer-type molecular abnormalities in human CNS neuronal cells,” Journal of Alzheimer's Disease, vol. 2, no. 3-4, pp. 261–281, 2000.
  133. M. Hashiguchi, T. Saito, S.-I. Hisanaga, and T. Hashiguchi, “Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 44525–44530, 2002. View at Publisher · View at Google Scholar · View at PubMed
  134. A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001.
  135. S. Kesavapany, Y. L. Zheng, N. Amin, and H. C. Pant, “Peptides derived from Cdk5 activator p35, specifically inhibit deregulated activity of Cdk5,” Biotechnology Journal, vol. 2, no. 8, pp. 978–987, 2007. View at Publisher · View at Google Scholar · View at PubMed
  136. Y. L. Zheng, S. Kesavapany, M. Gravell et al., “A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons,” EMBO Journal, vol. 24, no. 1, pp. 209–220, 2005. View at Publisher · View at Google Scholar · View at PubMed
  137. K. H. Sun, Y. De Pablo, F. Vincent, and K. Shah, “Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction,” Journal of Neurochemistry, vol. 107, no. 1, pp. 265–278, 2008. View at Publisher · View at Google Scholar · View at PubMed
  138. K. H. Chang, Y. De Pablo, H. P. Lee, H. G. Lee, M. A. Smith, and K. Shah, “Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer's disease,” Journal of Neurochemistry, vol. 113, no. 5, pp. 1221–1229, 2010. View at Publisher · View at Google Scholar · View at PubMed
  139. J. J. Pei, E. Braak, H. Braak et al., “Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration,” Journal of Alzheimer's Disease, vol. 3, no. 1, pp. 41–48, 2001.
  140. X. Zhu, C. A. Rottkamp, A. Hartzler et al., “Activation of MKK6, an upstream activator of p38, in Alzheimer's disease,” Journal of Neurochemistry, vol. 79, no. 2, pp. 311–318, 2001. View at Publisher · View at Google Scholar
  141. H. Mizusawa, T. Ishii, and S. Bannai, “Peroxiredoxin I (macrophage 23 kDa stress protein) is highly and widely expressed in the rat nervous system,” Neuroscience Letters, vol. 283, no. 1, pp. 57–60, 2000. View at Publisher · View at Google Scholar
  142. T. S. Chang, W. Jeong, S. Y. Choi, S. Yu, S. W. Kang, and S. G. Rhee, “Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25370–25376, 2002. View at Publisher · View at Google Scholar · View at PubMed
  143. S. W. Kang, S. G. Rhee, T. S. Chang, W. Jeong, and M. H. Choi, “2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications,” Trends in Molecular Medicine, vol. 11, no. 12, pp. 571–578, 2005. View at Publisher · View at Google Scholar · View at PubMed
  144. E. A. Veal, A. M. Day, and B. A. Morgan, “Hydrogen peroxide sensing and signaling,” Molecular Cell, vol. 26, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at PubMed
  145. D. Piedrahita, I. Hernández, A. López-Tobón et al., “Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer's mice,” Journal of Neuroscience, vol. 30, no. 42, pp. 13966–13976, 2010. View at Publisher · View at Google Scholar · View at PubMed
  146. K.-I. Iijima, K. Ando, S. Takeda et al., “Neuron-specific phosphorylation of Alzheimer's β-amyloid precursor protein by cyclin-dependent kinase 5,” Journal of Neurochemistry, vol. 75, no. 3, pp. 1085–1091, 2000. View at Publisher · View at Google Scholar
  147. J. C. Cruz, H. C. Tseng, J. A. Goldman, H. Shih, and L. H. Tsai, “Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles,” Neuron, vol. 40, no. 3, pp. 471–483, 2003. View at Publisher · View at Google Scholar
  148. A. C. Pant, Veeranna, H. C. Pant, and N. Amin, “Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5),” Brain Research, vol. 765, no. 2, pp. 259–266, 1997. View at Publisher · View at Google Scholar
  149. M. Sharma, P. Sharma, and H. C. Pant, “CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells,” Journal of Neurochemistry, vol. 73, no. 1, pp. 79–86, 1999. View at Publisher · View at Google Scholar
  150. P. Grant, P. Sharma, and H. C. Pant, “Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism,” European Journal of Biochemistry, vol. 268, no. 6, pp. 1534–1546, 2001. View at Publisher · View at Google Scholar
  151. M. R. Cookson and P. J. Shaw, “Oxidative stress and motor neurone disease,” Brain Pathology, vol. 9, no. 1, pp. 165–186, 1999.
  152. M. Strong, “The basics of therapeutics in amyotrophic lateral sclerosis,” Pharmacology & Therapeutics, vol. 5542, pp. 1–36, 2003.
  153. M. D. Nguyen, R. C. Larivière, and J. P. Julien, “Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions,” Neuron, vol. 30, no. 1, pp. 135–147, 2001. View at Publisher · View at Google Scholar
  154. M. V. Rao and R. A. Nixon, “Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review,” Neurochemical Research, vol. 28, no. 7, pp. 1041–1047, 2003. View at Publisher · View at Google Scholar
  155. D. Alvira, I. Ferrer, J. Gutierrez-Cuesta, B. Garcia-Castro, M. Pallàs, and A. Camins, “Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 14, no. 4, pp. 309–313, 2008. View at Publisher · View at Google Scholar · View at PubMed
  156. E. Avraham, R. Rott, E. Liani, R. Szargel, and S. Engelender, “Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 12842–12850, 2007. View at Publisher · View at Google Scholar · View at PubMed
  157. A. Kazantsev, H. A. Walker, N. Slepko et al., “A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila,” Nature Genetics, vol. 30, no. 4, pp. 367–376, 2002. View at Publisher · View at Google Scholar · View at PubMed
  158. I. Sánchez, C. Mahlke, and J. Yuan, “Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders,” Nature, vol. 421, no. 6921, pp. 373–379, 2003. View at Publisher · View at Google Scholar · View at PubMed
  159. Y. P. Goldberg, D. W. Nicholson, D. M. Rasper et al., “Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract,” Nature Genetics, vol. 13, no. 4, pp. 442–449, 1996. View at Publisher · View at Google Scholar · View at PubMed
  160. C. L. Wellington, R. Singaraja, L. Ellerby et al., “Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells,” Journal of Biological Chemistry, vol. 275, no. 26, pp. 19831–19838, 2000. View at Publisher · View at Google Scholar · View at PubMed
  161. Y. J. Kim, Y. Yi, E. Sapp et al., “Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpaindependent proteolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12784–12789, 2001. View at Publisher · View at Google Scholar · View at PubMed
  162. A. Lunkes, K. S. Lindenberg, L. Ben-Haem et al., “Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions,” Molecular Cell, vol. 10, no. 2, pp. 259–269, 2002. View at Publisher · View at Google Scholar
  163. S. Luo, C. Vacher, J. E. Davies, and D. C. Rubinsztein, “Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity,” Journal of Cell Biology, vol. 169, no. 4, pp. 647–656, 2005. View at Publisher · View at Google Scholar · View at PubMed
  164. S. L. Anne, F. Saudou, and S. Humbert, “Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons,” Journal of Neuroscience, vol. 27, no. 27, pp. 7318–7328, 2007. View at Publisher · View at Google Scholar · View at PubMed
  165. S. Kaminosono, T. Saito, F. Oyama et al., “Suppression of mutant huntingtin aggregate formation by Cdk5/p35 through the effect on microtubule stability,” Journal of Neuroscience, vol. 28, no. 35, pp. 8747–8755, 2008. View at Publisher · View at Google Scholar · View at PubMed