About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2012 (2012), Article ID 281768, 17 pages
http://dx.doi.org/10.1155/2012/281768
Review Article

Preclinical Determinants of Drug Choice under Concurrent Schedules of Drug Self-Administration

Department of Pharmacology and Toxicology, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA

Received 15 June 2012; Accepted 14 October 2012

Academic Editor: Edward W. Boyer

Copyright © 2012 Matthew L. Banks and S. Stevens Negus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Ator and R. R. Griffiths, “Principles of drug abuse liability assessment in laboratory animals,” Drug and Alcohol Dependence, vol. 70, no. 3, pp. S55–S72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. L. P. Carter and R. R. Griffiths, “Principles of laboratory assessment of drug abuse liability and implications for clinical development.,” Drug and Alcohol Dependence, vol. 105, supplement 1, pp. S14–S25, 2009. View at Scopus
  3. B. F. Skinner, The Behavior of Organisms, Appleton-Century-Crofts, New York, NY, USA, 1938.
  4. C. B. Ferster and B. F. Skinner, Schedules of Reinforcement, Appleton-Century-Croft, New York, NY, USA, 1957.
  5. J. R. Weeks, “Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats,” Science, vol. 138, no. 3537, pp. 143–144, 1962. View at Scopus
  6. J. R. Weeks and R. J. Collins, “Factors affecting voluntary morphine intake in self-maintained addicted rats,” Psychopharmacologia, vol. 6, no. 4, pp. 267–279, 1964. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Young and S. Herling, “Drugs as reinforcers: studies in laboratory animals,” in Behavioral Analysis of Drug Dependence, S. Goldberg and I. Stolerman, Eds., pp. 9–67, Academic Press, Orlando, Fla, USA, 1986.
  8. J. Katz, “Drugs as reinforcers: pharmacological and behavioral factorsin,” in The Neuropharmacological Basis of Reward, J. Leibman and S. Cooper, Eds., pp. 164–213, Clarendon Press, Oxford, UK, 1989.
  9. C. Iglauer and J. H. Woods, “Concurrent performances: reinforcement by different doses of intravenous cocaine in rhesus monkeys,” Journal of the Experimental Analysis of Behavior, vol. 22, no. 1, pp. 179–196, 1974. View at Scopus
  10. C. E. Johanson and C. R. Schuster, “A choice procedure for drug reinforcers: cocaine and methylphenidate in the rhesus monkey,” Journal of Pharmacology and Experimental Therapeutics, vol. 193, no. 2, pp. 676–688, 1975. View at Scopus
  11. N. K. Mello and S. S. Negus, “Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures,” Neuropsychopharmacology, vol. 14, no. 6, pp. 375–424, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Zernig, G. Wakonigg, E. Madlung et al., “Do vertical shifts in dose-response rate-relationships in operant conditioning procedures indicate ‘sensitization’ to ‘drug wanting’?” Psychopharmacology, vol. 171, no. 3, pp. 349–363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Meisch and G. Lemaire, “Drug self-administration,” in Methods In Behavioral Pharmacology, F. Van Haaren, Ed., pp. 257–300, Elsevier, Amsterdam, The Netherlands, 1993.
  14. G. Deneau, T. Yanagita, and M. H. Seevers, “Self-administration of psychoactive substances by the monkey-a measure of psychological dependence,” Psychopharmacologia, vol. 16, no. 1, pp. 30–48, 1969. View at Publisher · View at Google Scholar · View at Scopus
  15. R. T. Kelleher and S. R. Goldberg, “General introduction: control of drug taking behavior by schedules of reinforcement,” Pharmacological Reviews, vol. 27, no. 3, pp. 291–299, 1975. View at Scopus
  16. R. Pickens and T. Thompson, “Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size.,” Journal of Pharmacology and Experimental Therapeutics, vol. 161, no. 1, pp. 122–129, 1968. View at Scopus
  17. M. L. Banks, B. E. Blough, and S. S. Negus, “Effects of monoamine releasers with varying selectivity for releasing dopamine/norepinephrine versus serotonin on choice between cocaine and food in rhesus monkeys,” Behavioural Pharmacology, vol. 22, no. 8, pp. 824–836, 2011. View at Publisher · View at Google Scholar
  18. S. S. Negus and N. K. Mello, “Effects of chronic methadone treatment on cocaine- and food-maintained responding under second-order, progressive-ratio and concurrent-choice schedules in rhesus monkeys,” Drug and Alcohol Dependence, vol. 74, no. 3, pp. 297–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Negus and M. L. Banks, “Making the right choice: lessons from drug discrimination for research on drug reinforcement and drug self-administration,” in Drug DiscrimInation: Applications To MedicInal Chemistry and Drug Studies, R. A. Glennon and R. Young, Eds., pp. 361–388, John Wiley and Sons, Holboken, NJ, USA, 2011.
  20. S. D. S. Spragg, “Morphine addiction in chimpanzees,” in Comparative Psychology Monographs, pp. 1–132, The John Hopkins Press, Baltimore, Md, USA, 1940.
  21. J. R. Nichols and W. M. Davis, “Drug addiction. II. Variation of addiction,” Journal of the American Pharmacists Association, vol. 48, pp. 259–262, 1959.
  22. G. M. Heyman, “Ethanol regulated preference in rats,” Psychopharmacology, vol. 112, no. 2-3, pp. 259–269, 1993. View at Scopus
  23. S. D. Comer, J. B. Ashworth, R. W. Foltin, C. E. Johanson, J. P. Zacny, and S. L. Walsh, “The role of human drug self-administration procedures in the development of medications,” Drug and Alcohol Dependence, vol. 96, no. 1-2, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Haney and R. Spealman, “Controversies in translational research: drug self-administration,” Psychopharmacology, vol. 199, no. 3, pp. 403–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. H. Heyman, Addiction: A Disorder of Choice, Harvard University Press, Cambridge, Mass, USA, 2009.
  26. R. Hernstein and D. Prelec, “A theory of addiction,” in Choice Over Time, G. Loewenstein and J. Elster, Eds., pp. 331–360, Russell Sage Press, New York, NY, USA, 1992.
  27. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, vol. 992, American Psychiatric Association, Washington, DC, USA, Fourth edition, 2000.
  28. America Psychiatric Association, http://www.dsm5.org/proposedrevision/Pages/SubstanceUseandAddictiveDisorders.aspx, 2012.
  29. J. D. Findley, W. W. Robinson, and L. Peregrino, “Addiction to secobarbital and chlordiazepoxide in the rhesus monkey by means of a self-infusion preference procedure,” Psychopharmacologia, vol. 26, no. 2, pp. 93–114, 1972. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Iglauer, M. E. Llewellyn, and J. H. Woods, “Concurrent schedules of cocaine injection in rhesus monkeys: dose variations under independent and non independent variable interval procedures,” Pharmacological Reviews, vol. 27, no. 3, pp. 367–383, 1975. View at Scopus
  31. C. E. Johanson, “Pharmacological and environmental variables affecting drug preference in rhesus monkeys,” Pharmacological Reviews, vol. 27, no. 3, pp. 343–355, 1975. View at Scopus
  32. K. G. Anderson and W. L. Woolverton, “Effects of dose and infusion delay on cocaine self-administration choice in rhesus monkeys,” Psychopharmacology, vol. 167, no. 4, pp. 424–430, 2003. View at Scopus
  33. K. G. Anderson and W. L. Woolverton, “Dose and schedule determinants of cocaine choice under concurrent variable-interval schedules in rhesus monkeys,” Psychopharmacology, vol. 176, no. 3-4, pp. 274–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. E. Llewellyn, C. Iglauer, and J. H. Woods, “Relative reinforcer magnitude under a nonindependent concurrent schedule of cocaine reinforcement in rhesus monkeys,” Journal of the Experimental Analysis of Behavior, vol. 25, no. 1, pp. 81–91, 1976. View at Scopus
  35. C. W. Schindler, L. V. Panlilio, and E. B. Thorndike, “Effect of rate of delivery of intravenous cocaine on self-administration in rats,” Pharmacology Biochemistry and Behavior, vol. 93, no. 4, pp. 375–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. E. Sorge and P. B. S. Clarke, “Rats self-administer intravenous nicotine delivered in a novel smoking-relevant procedure: effects of dopamine antagonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 330, no. 2, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. W. L. Woolverton and K. G. Anderson, “Effects of delay to reinforcement on the choice between cocaine and food in rhesus monkeys,” Psychopharmacology, vol. 186, no. 1, pp. 99–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. W. L. Woolverton and J. K. Rowlett, “Choice maintained by cocaine or food in monkeys: effects of varying probability of reinforcement,” Psychopharmacology, vol. 138, no. 1, pp. 102–106, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. W. L. Woolverton, “Intravenous self-administration of cocaine under concurrent VI schedules of reinforcement,” Psychopharmacology, vol. 127, no. 3, pp. 195–203, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. W. L. Woolverton and K. Alling, “Choice under concurrent VI schedules: comparison of behavior maintained by cocaine or food,” Psychopharmacology, vol. 141, no. 1, pp. 47–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. K. G. Anderson and W. L. Woolverton, “Concurrent variable-interval drug self-administration and the generalized matching law: a drug-class comparison,” Behavioural Pharmacology, vol. 11, no. 5, pp. 413–420, 2000. View at Scopus
  42. M. N. Koffarnus and J. H. Woods, “Quantification of drug choice with the generalized matching law in rhesus monkeys,” Journal of the Experimental Analysis of Behavior, vol. 89, no. 2, pp. 209–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. R. Hursh, “Economic concepts for the analysis of behavior,” Journal of the Experimental Analysis of Behavior, vol. 34, no. 2, pp. 219–238, 1980. View at Publisher · View at Google Scholar
  44. W. K. Bickel, R. J. DeGrandpre, and S. T. Higgins, “The behavioral economics of concurrent drug reinforcers: a review and reanalysis of drug self administration research,” Psychopharmacology, vol. 118, no. 3, pp. 250–259, 1995. View at Scopus
  45. S. R. Hursh and R. Bauman, “The behavioral analysis of demand,” in Advances In Behavioral Economics, L. Green and J. Kagel, Eds., pp. 117–165, Ablex Publishing, Norwood, Mass, USA, 1987.
  46. C. E. Johanson and T. Aigner, “Comparison of the reinforcing properties of cocaine and procaine in rhesus monkeys,” Pharmacology Biochemistry and Behavior, vol. 15, no. 1, pp. 49–53, 1981. View at Scopus
  47. W. L. Woolverton and C. E. Johanson, “Preference in rhesus monkeys given a choice between cocaine and d,l-cathinone.,” Journal of the Experimental Analysis of Behavior, vol. 41, no. 1, pp. 35–43, 1984. View at Scopus
  48. A. M. Manzardo, J. A. Del Rio, L. Stein, and J. D. Belluzzi, “Rats choose cocaine over dopamine agonists in a two-lever self-administration preference test,” Pharmacology Biochemistry and Behavior, vol. 70, no. 2-3, pp. 257–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. A. M. Manzardo, L. Stein, and J. D. Belluzzi, “Rats prefer cocaine over nicotine in a two-lever self-administration choice test,” Brain Research, vol. 924, no. 1, pp. 10–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. J. A. Lile, D. Morgan, A. M. Birmingham et al., “The reinforcing efficacy of the dopamine reuptake inhibitor 2β-propanoyl-3β-(4-tolyl)-tropane (PTT) as measured by a progressive-ratio schedule and a choice procedure in rhesus monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 2, pp. 640–648, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Wade-Galuska, G. Winger, and J. H. Woods, “A behavioral economic analysis of cocaine and remifentanil self-administration in rhesus monkeys,” Psychopharmacology, vol. 194, no. 4, pp. 563–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Caprioli, M. Celentano, A. Dubla, F. Lucantonio, P. Nencini, and A. Badiani, “Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats,” Biological Psychiatry, vol. 65, no. 10, pp. 893–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. T. G. Aigner and R. L. Balster, “Choice behavior in rhesus monkeys: cocaine versus food,” Science, vol. 201, no. 4355, pp. 534–535, 1978. View at Scopus
  54. C. A. Paronis, M. Gasior, and J. Bergman, “Effects of cocaine under concurrent fixed ratio schedules of food and IV drug availability: a novel choice procedure in monkeys,” Psychopharmacology, vol. 163, no. 3-4, pp. 283–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. S. S. Negus, “Rapid assessment of choice between cocaine and food in rhesus monkeys: effects of environmental manipulations and treatment with d-amphetamine and flupenthixol,” Neuropsychopharmacology, vol. 28, no. 5, pp. 919–931, 2003. View at Scopus
  56. P. W. Czoty and M. A. Nader, “Individual differences in the effects of environmental stimuli on cocaine choice in socially housed male cynomolgus monkeys,” Psychopharmacology, vol. 224, no. 1, pp. 69–79, 2012. View at Publisher · View at Google Scholar
  57. M. A. Nader and W. L. Woolverton, “Effects of increasing the magnitude of an alternative reinforcer on drug choice in a discrete-trials choice procedure,” Psychopharmacology, vol. 105, no. 2, pp. 169–174, 1991. View at Scopus
  58. M. A. Nader and W. L. Woolverton, “Effects of increasing response requirement on choice between cocaine and food in rhesus monkeys,” Psychopharmacology, vol. 108, no. 3, pp. 295–300, 1992. View at Scopus
  59. M. A. Nader and W. L. Woolverton, “Choice between cocaine and food by rhesus monkeys: effects of conditions of food availability,” Behavioural Pharmacology, vol. 3, no. 6, pp. 635–638, 1992. View at Scopus
  60. T. F. Elsmore, G. V. Fletcher, D. G. Conrad, and F. J. Sodetz, “Reduction of heroin intake in baboons by an economic constraint,” Pharmacology Biochemistry and Behavior, vol. 13, no. 5, pp. 729–731, 1980. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Thomsen, A. Fink-Jensen, D. P. D. Woldbye et al., “Effects of acute and chronic aripiprazole treatment on choice between cocaine self-administration and food under a concurrent schedule of reinforcement in rats,” Psychopharmacology, vol. 201, no. 1, pp. 43–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. E. Carroll, S. T. Lac, and S. L. Nygaard, “A concurrently available nondrug reinforcer prevents the acquisition or decreases the maintenance of cocaine-reinforced behavior,” Psychopharmacology, vol. 97, no. 1, pp. 23–29, 1989. View at Scopus
  63. S. I. Dworkin, S. Mirkis, and J. E. Smith, “Reinforcer interactions under concurrent schedules of food, water, and intravenous cocaine,” Behavioural Pharmacology, vol. 1, no. 4, pp. 327–338, 1990.
  64. A. Ping and P. J. Kruzich, “Concurrent access to sucrose pellets decreases methamphetamine-seeking behavior in Lewis rats,” Pharmacology Biochemistry and Behavior, vol. 90, no. 3, pp. 492–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Lenoir, F. Serre, L. Cantin, and S. H. Ahmed, “Intense sweetness surpasses cocaine reward,” PloS one, vol. 2, no. 1, p. e698, 2007. View at Scopus
  66. R. M. Wurster, R. R. Griffiths, J. D. Findley, and J. V. Brady, “Reduction of heroin self-administration in baboons by manipulation of behavioral and pharmacological conditions,” Pharmacology Biochemistry and Behavior, vol. 7, no. 6, pp. 519–528, 1977. View at Scopus
  67. S. S. Negus, “Interactions between the reinforcing effects of cocaine and heroin in a drug-vs-food choice procedure in rhesus monkeys: a dose-addition analysis,” Psychopharmacology, vol. 180, no. 1, pp. 115–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. J. Ward, D. Morgan, and D. C. S. Roberts, “Comparison of the reinforcing effects of cocaine and cocaine/heroin combinations under progressive ratio and choice schedules in rats,” Neuropsychopharmacology, vol. 30, no. 2, pp. 286–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. K. B. Freeman and W. L. Woolverton, “Self-administration of cocaine and remifentanil by monkeys: choice between single drugs and mixtures,” Psychopharmacology, vol. 215, no. 2, pp. 281–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. W. Stevenson, J. E. Folk, K. C. Rice, and S. S. Negus, “Interactions between δ and μ opioid agonists in assays of schedule-controlled responding, thermal nociception, drug self-administration, and drug versus food choice in rhesus monkeys: studies with SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl) -3-methoxybenzyl]-N,N-diethylbenzamide] and heroin,” Journal of Pharmacology and Experimental Therapeutics, vol. 314, no. 1, pp. 221–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. C. E. Johanson, “The effects of electric shock on responding maintained by cocaine injections in a choice procedure in the rhesus monkey,” Psychopharmacology, vol. 53, no. 3, pp. 277–282, 1977. View at Scopus
  72. S. S. Negus, “Effects of punishment on choice between cocaine and food in rhesus monkeys,” Psychopharmacology, vol. 181, no. 2, pp. 244–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. W. L. Woolverton, K. B. Freeman, J. Myerson, and L. Green, “Suppression of cocaine self-administration in monkeys: effects of delayed punishment,” Psychopharmacology, vol. 220, no. 3, pp. 509–517, 2012. View at Publisher · View at Google Scholar
  74. R. R. Griffiths, R. M. Wurster, and J. V. Brady, “Discrete trial choice procedure: effects of naloxone and methadone on choice between food and heroin,” Pharmacological Reviews, vol. 27, no. 3, pp. 357–365, 1975. View at Scopus
  75. R. R. Griffiths, R. M. Wurster, and J. V. Brady, “Choice between food and heroin: effects of morphine, naloxone, and secobarbital.,” Journal of the Experimental Analysis of Behavior, vol. 35, no. 3, pp. 335–351, 1981. View at Scopus
  76. S. S. Negus, “Choice between heroin and food in nondependent and heroin-dependent rhesus monkeys: effects of naloxone, buprenorphine, and methadone,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 2, pp. 711–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. S. Negus, “Opioid antagonist effects in animal models related to opioid abuse: drug discrimination and drug self-administration,” in Opiate RecepTors and Antagonists: From Bench To Clinic, R. Dean, E. J. Bilsky, and S. S. Negus, Eds., pp. 201–226, Humana Press, New York, NY, USA, 2009.
  78. T. Wade-Galuska, C. M. Galuska, and G. Winger, “Effects of daily morphine administration and deprivation on choice and demand for remifentanil and cocaine in rhesus monkeys,” Journal of the Experimental Analysis of Behavior, vol. 95, no. 1, pp. 75–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. S. Negus and K. C. Rice, “Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin vs food choice in heroin-dependent rhesus monkeys,” Neuropsychopharmacology, vol. 34, no. 4, pp. 899–911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. L. Banks and S. S. Negus, “Effects of extended cocaine access and cocaine withdrawal on choice between cocaine and food in rhesus monkeys,” Neuropsychopharmacology, vol. 35, no. 2, pp. 493–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Thomsen, A. Barrett, S. S. Negus, and S. B. Caine, “Cocaine-food choice rats: environmental manipulations and effects of amphetamine,” Behavioural Pharmacology. In press.
  82. E. Augier, C. Vouillac, and S. H. Ahmed, “Diazepam promotes choice of abstinence in cocaine self-administering rats,” Addiction Biology, vol. 17, no. 2, pp. 378–391, 2012. View at Publisher · View at Google Scholar
  83. P. W. Czoty, C. McCabe, and M. A. Nader, “Effects of the 5-HT1A agonist (±)-8-hydroxy-2-(di-n- propylamino)tetralin (8-OH-DPAT) on cocaine choice in cynomolgus monkeys,” Behavioural Pharmacology, vol. 16, no. 3, pp. 187–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. S. S. Negus, “Effects of the kappa opioid agonist U50,488 and the kappa opioid antagonist nor-binaltorphimine on choice between cocaine and food in rhesus monkeys,” Psychopharmacology, vol. 176, no. 2, pp. 204–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. W. L. Woolverton and R. L. Balster, “Effects of antipsychotic compounds in rhesus monkeys given a choice between cocaine and food,” Drug and Alcohol Dependence, vol. 8, no. 1, pp. 69–78, 1981. View at Scopus
  86. W. L. Woolverton and R. L. Balster, “The effects of lithium on choice between cocaine and food in the rhesus monkey,” Communications in Psychopharmacology, vol. 3, no. 5, pp. 309–318, 1979. View at Scopus
  87. F. J. Vocci, “Commentary: can replacement therapy work in the treatment of cocaine dependence? and what are we replacing anyway?” Addiction, vol. 102, no. 12, pp. 1888–1889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. K. Greenwald, L. H. Lundahl, and C. L. Steinmiller, “Sustained release d-amphetamine reduces cocaine but not speedball-seeking in buprenorphine-maintained volunteers: a test of dual-agonist pharmacotherapy for cocaine/heroin polydrug abusers,” Neuropsychopharmacology, vol. 35, no. 13, pp. 2624–2637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. C. R. Rush, W. W. Stoops, R. J. Sevak, and L. R. Hays, “Cocaine choice in humans during D-amphetamine maintenance,” Journal of Clinical Psychopharmacology, vol. 30, no. 2, pp. 152–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. S. L. Walsh, B. Geter-Douglas, E. C. Strain, and G. E. Bigelow, “Enadoline and butorphanol: evaluation of κ-agonists on cocaine pharmacodynamics and cocaine self-administration in humans,” Journal of Pharmacology and Experimental Therapeutics, vol. 299, no. 1, pp. 147–158, 2001. View at Scopus
  91. P. W. Czoty, C. McCabe, and M. A. Nader, “Assessment of the relative reinforcing strength of cocaine in socially housed monkeys using a choice procedure,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 1, pp. 96–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. M. L. Banks, J. E. Sprague, P. W. Czoty, and M. A. Nader, “Effects of ambient temperature on the relative reinforcing strength of MDMA using a choice procedure in monkeys,” Psychopharmacology, vol. 196, no. 1, pp. 63–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Bergman, “Medications for stimulant abuse: agonist-based strategies and preclinical evaluation of the mixed-action D2 partial agonist aripiprazole (Abilify®),” Experimental and Clinical Psychopharmacology, vol. 16, no. 6, pp. 475–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. L. Banks, P. W. Czoty, J. E. Sprague, and M. A. Nader, “Influence of thyroid hormones on 3,4-methylenedioxymethamphetamine-induced thermogenesis and reinforcing strength in monkeys,” Behavioural Pharmacology, vol. 19, no. 2, pp. 167–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. R. L. Corwin and C. R. Schuster, “Anorectic specificity as measured in a choice paradigm in rhesus monkeys,” Pharmacology Biochemistry and Behavior, vol. 45, no. 1, pp. 131–141, 1993. View at Publisher · View at Google Scholar · View at Scopus
  96. L. A. Marsch and W. K. Bickel, “Toward a behavioral economic understanding of drug dependence: delay discounting processes,” Addiction, vol. 96, no. 1, pp. 73–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Monterosso, P. Piray, and S. Luo, “Neuroeconomics and the study of addiction,” Biological Psychiatry, vol. 72, no. 2, pp. 107–112, 2012. View at Publisher · View at Google Scholar
  98. C. A. Winstanley, “The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders,” British Journal of Pharmacology, vol. 164, no. 4, pp. 1301–1321, 2011. View at Publisher · View at Google Scholar
  99. W. L. Woolverton, J. A. English, and M. R. Weed, “Choice between cocaine and food in a discrete-trials procedure in monkeys: a unit price analysis,” Psychopharmacology, vol. 133, no. 3, pp. 269–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. W. L. Woolverton and J. A. English, “Further analysis of choice between cocaine and food using the unit price model of behavioral economics,” Drug and Alcohol Dependence, vol. 49, no. 1, pp. 71–78, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. K. G. Anderson, A. J. Velkey, and W. L. Woolverton, “The generalized matching law as a predictor of choice between cocaine and food in rhesus monkeys,” Psychopharmacology, vol. 163, no. 3-4, pp. 319–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Gasior, J. Bergman, M. J. Kallman, and C. A. Paronis, “Evaluation of the reinforcing effects of monoamine reuptake inhibitors under a concurrent schedule of food and i.v. drug delivery in rhesus monkeys,” Neuropsychopharmacology, vol. 30, no. 4, pp. 758–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Gasior, C. A. Paronis, and J. Bergman, “Modification by dopaminergic drugs of choice behavior under concurrent schedules of intravenous saline and food delivery in monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 308, no. 1, pp. 249–259, 2004. View at Publisher · View at Google Scholar · View at Scopus