About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2012 (2012), Article ID 706905, 7 pages
http://dx.doi.org/10.1155/2012/706905
Review Article

The Anti-Inflammatory, Phytoestrogenic, and Antioxidative Role of Labisia pumila in Prevention of Postmenopausal Osteoporosis

Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Kuala Lumpur campus, 50300 Kuala Lumpur, Malaysia

Received 16 November 2011; Accepted 8 January 2012

Academic Editor: Satya Sarker

Copyright © 2012 M. E. Nadia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lewington, Medicinal Plants and Plant Extracts: A Review of Their Importation into Europe, Traffic International, Cambridge, UK, 1993.
  2. WHO, Traditional Medicine, WHO, Geneva, Switzerland, 2003.
  3. S. Elliot, Pharmacy Needs Tropical Forests, Manufacturing Chemist, 1986.
  4. H. R. Arthur, “A phytochemical survey of some plants of north Borneo,” Journal of Pharmacy and Pharmacology, vol. 6, no. 1, pp. 66–72, 1954. View at Publisher · View at Google Scholar
  5. L. E. Teo, G. Pachiaper, K. C. Chan et al., “A new phytochemical survey of Malaysia V. Preliminary screening and plant chemical studies,” Journal of Ethnopharmacology, vol. 28, no. 1, pp. 63–101, 1990. View at Scopus
  6. A. L. Mohamed, A. Zainudin, G. H. Petol, et al., “Phytochemical and toxicity screening of plants from Fraser Hill, Pahang,” in Chemical Prospecting in the Malaysian Forest, G. Ismail, M. Mohamaed, and L. B. Din, Eds., pp. 1–8, Pelanduk, Petaling Jaya, Malaysia, 1995.
  7. G. Kaur, H. Hamid, A. Ali, M. S. Alam, and M. Athar, “Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria,” Journal of Ethnopharmacology, vol. 90, no. 2-3, pp. 285–292, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. Z. A. Zakaria, H. Patahuddin, A. S. Mohamad, D. A. Israf, and M. R. Sulaiman, “In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum,” Journal of Ethnopharmacology, vol. 128, no. 1, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. C. L. Hsu, B. O. H. Hong, Y. U. Shan, and G. C. Yen, “Antioxidant and Anti-Inflammatory effects of orthosiphon aristatus and its bioactive compounds,” Journal of Agricultural and Food Chemistry, vol. 58, no. 4, pp. 2150–2156, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. C. Stone, “Notes on the genus Labisia Lindl (Myrsinaceae),” Malayan Nature Journal, vol. 42, pp. 43–51, 1988.
  11. A. J. Jamia, P. J. Houghton, S. R. Milligan, and J. Ibrahim, “The Oestrogenic and Cytotoxic Effects of the Extracts of Labisia pumila var. alata and Labisia pumila var. pumila In Vitro,” Malaysian Journal of Health Sciences, vol. 1, pp. 53–60, 1988.
  12. I. H. Burkill, Dictionary of the Economic Products of the Malay Peninsula, Publisher Crown Agents for the Colonies, London, UK, 1935.
  13. M. A. Rasadah and A. S. Zainon, Database on ASEAN Herbal and Medicinal Plants, vol. 1, ASEAN Publication, 2003.
  14. M. Zakaria and M. A. Mohd, Traditional Malay Medicinal Plants, vol. 8, Penerbit Fajar Bakti, Kuala Lumpur, Malaysia, 1994.
  15. G. Bodeker, Health and Beauty from the Rainforest: Malaysian Traditions of Ramuan, Editions Didier Millet Pty, Kuala Lumpur, Malaysia, 1999.
  16. A. Fasihuddin, A. H. Rahman, and R. Hasmah, “Medicinal plants used by bajau community in sabah,” in Trends in Traditional Medicine Research, K. L. Chan, et al., Ed., pp. 493–504, The School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia, 1995.
  17. J. A. Jamal, P. J. Houghton, and S. R. Milligan, “Testing of labisia pumila for oestrogenic activity using a recombinant yeast sceen,” Journal of Pharmacy and Pharmacology, vol. 50, p. 79, 1998.
  18. Institute for Medical Research, Estrogenic and Androgenic Activities of Kacip Fatimah (Labisia Pumila), Abstracts of Research Projects, Ministry of Health Malaysia, Kuala Lumpur, Malaysia, 2002.
  19. L. Manneras, M. Fazliana, W. M. Wan Nazaimoon, et al., “Beneficial metabolic effects of the Malaysian herb Labisia pumila var. alata in a rat model of polycystic ovary syndrome,” Journal of Ethnopharmacology, vol. 127, pp. 346–351, 2010.
  20. M. Fazliana, W. M. Wan Nazaimoon, H. F. Gu, and C. G. Östenson, “Labisia pumila extract regulates body weight and adipokines in ovariectomized rats,” Maturitas, vol. 62, no. 1, pp. 91–97, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. IFST, Current Hot Topics. Phytoestrogens, Institute of Food Science and Technology, London, UK, 2001.
  22. H. Husniza, Estrogenic and Androgenic Activities of Kacip Fatimah (Labisia pumila), Abstracts of Research Projects, Institute of Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia, 2002.
  23. B. Avula, Y. H. Wang, Z. Ali, T. J. Smillie, and I. A. Khan, “Quantitative determination of triperpene saponins and alkenated-phenolics from Labisia pumila by LCUV/ELSD method and confirmation by LC-ESI-TOF,” Planta Medica, vol. 76, p. 25, 2010.
  24. V. Beral, E. Banks, and G. Reeves, “Evidence from randomised trials on the long-term effects of hormone replacement therapy,” Lancet, vol. 360, no. 9337, pp. 942–944, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. T. Chlebowski, J. A. Kim, and N. F. Col, “Estrogen deficiency symptom management in breast cancer survivors in the changing context of menopausal hormone therapy,” Seminars in Oncology, vol. 30, no. 6, pp. 776–88, 2003.
  26. B. Komm and P. V. N. Bodine, “Regulation of bone cell function by estrogens,” in Osteoporosis, R. Marcus, D. Feldman, and J. Kelsey, Eds., pp. 305–337, Academic Press, San Diego, Calif, USA, 2001.
  27. S. C. Manolagas, S. Kousteni, and R. L. Jilka, “Sex steroids and bone,” Recent Progress in Hormone Research, vol. 57, pp. 385–409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. N. E. Lane, The Osteoporosis Book: A Guide for Patients and Their Families, Oxford University Press, New York, NY, USA, 2001.
  30. E. Amir, O. C. Freedman, B. Seruga, and D. G. Evans, “Assessing women at high risk of breast cancer: a review of risk assessment models,” Journal of the National Cancer Institute, vol. 102, no. 10, pp. 680–691, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. NIH, Osteoporosis and Related Bone Disease, National Resource Centre, 2011.
  32. J. P. Bilezikian, “Osteoporosis in men,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3431–3434, 1999. View at Scopus
  33. J. R. Arron and Y. Choi, “Bone versus immune system,” Nature, vol. 408, no. 6812, pp. 535–536, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. Lorenzo, “Interactions between immune and bone cells: new insights with many remaining questions,” Journal of Clinical Investigation, vol. 106, no. 6, pp. 749–752, 2000. View at Scopus
  35. S. C. Manolagas and R. L. Jilka, “Mechanisms of disease: bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis,” The New England Journal of Medicine, vol. 332, no. 5, pp. 305–311, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Wei, H. Kitaura, P. Zhou, F. Patrick Ross, and S. L. Teitelbaum, “IL-1 mediates TNF-induced osteoclastogenesis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 282–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Pacifici, L. Rifas, R. McCracken et al., “Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2398–2402, 1989. View at Scopus
  39. D. Mitra, D. M. Elvins, D. J. Speden, and A. J. Collins, “The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density,” Rheumatology, vol. 39, no. 1, pp. 85–89, 2000. View at Scopus
  40. T. Jensen, M. Klarlund, M. Hansen, K. E. Jensen, H. Skjodt, and L. Hydlldstrup, “Connective tissue metabolism in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity, bone mineral density, and radiographyc outcome,” Journal of Rheumatology, vol. 31, pp. 1698–1708, 2004.
  41. K. Ishihara and T. Hirano, “IL-6 in autoimmune disease and chronic inflammatory proliferative disease,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 357–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Girasole, G. Passeri, R. L. Jilka, and S. C. Manolagas, “Interleukin-11: a new cytokine critical for osteoclast development,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1516–1524, 1994. View at Scopus
  43. R. L. Jilka, R. S. Weinstein, T. Bellido, A. M. Parfitt, and S. C. Manolagas, “Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 793–802, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Fuller, B. Wong, S. Fox, Y. Choi, and T. J. Chambers, “TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts,” Journal of Experimental Medicine, vol. 188, no. 5, pp. 997–1001, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Jilka, “Cytokines, bone remodeling, and estrogen deficiency,” Bone, vol. 23, no. 2, pp. 75–81, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. D. A. Papanicolaou, R. L. Wilder, S. C. Manolagas, and G. P. Chrousos, “The pathophysiologic roles of interleukin-6 in human disease,” Annals of Internal Medicine, vol. 128, no. 2, pp. 127–137, 1998. View at Scopus
  47. R. B. Kimble, A. B. Matayoshi, J. L. Vannice, V. T. Kung, C. Williams, and R. Pacifici, “Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period,” Endocrinology, vol. 136, no. 7, pp. 3054–3061, 1995. View at Scopus
  48. L. C. Hofbauer, S. Khosla, C. R. Dunstan, D. L. Lacey, T. C. Spelsberg, and B. L. Riggs, “Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells,” Endocrinology, vol. 140, no. 9, pp. 4367–4370, 1999. View at Scopus
  49. S. Cenci, M. N. Weitzmann, C. Roggia et al., “Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1229–1237, 2000. View at Scopus
  50. P. Collin-Osdoby, L. Rothe, F. Anderson, M. Nelson, W. Maloney, and P. Osdoby, “Receptor activator of NF-κB and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20659–20672, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. F. Wan Ezumi, S. Siti Amrah, A. W. M. Suhaimi, and S. S. J. Mohsin, “Evaluation of the female reproductive toxicity of aqueous extract of Labisia pumila var. alata in rats,” Indian Journal of Pharmacology, vol. 39, no. 1, pp. 30–32, 2007. View at Scopus
  52. G. D. Singh, M. Ganjoo, M. S. Youssouf et al., “Sub-acute toxicity evaluation of an aqueous extract of Labisia pumila, a Malaysian herb,” Food and Chemical Toxicology, vol. 47, no. 10, pp. 2661–2665, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. C. Taneja, Sub-Chronic (90 days) Oral Toxicity Studies of Aqueous Extract of Labisia pumila in Wistar Rats (250, 500&1000 mg/kg b. wt. only), Indian Institute of Integrative Medicine, Jammu, India, 2004.
  54. B. L. Riggs, S. Khosla, and L. J. Melton, “Sex steroids and the construction and conservation of the adult skeleton,” Endocrine Reviews, vol. 23, no. 3, pp. 279–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Syed and S. Khosla, “Mechanisms of sex steroid effects on bone,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 688–696, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. R. T. Turner, B. L. Riggs, and T. C. Spelsberg, “Skeletal effects of estrogen,” Endocrine Reviews, vol. 15, no. 3, pp. 275–300, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. H. K. Choi, D. H. Kim, J. W. Kim, S. Ngadiran, M. R. Sarmidi, and C. S. Park, “Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation,” Journal of Bioscience and Bioengineering, vol. 109, no. 3, pp. 291–296, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. L. J. Crofford, “COX-1 and COX-2 tissue expression: Implications and predictions,” Journal of Rheumatology, vol. 24, no. 49, pp. 15–19, 1997. View at Scopus
  59. H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998. View at Scopus
  60. J. H. M. Feyen and L. G. Raisz, “Prostaglandin production by calvariae from sham operated and oophorectomized rats: effect of 17β-estradiol in vivo,” Endocrinology, vol. 121, no. 2, pp. 819–821, 1987. View at Scopus
  61. M. R. Forwood, “Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo,” Journal of Bone and Mineral Research, vol. 11, no. 11, pp. 1688–1693, 1996. View at Scopus
  62. K. Fuller, C. Murphy, B. Kirstein, S. W. Fox, and T. J. Chambers, “TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL,” Endocrinology, vol. 143, no. 3, pp. 1108–1118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. S. E. Lee, W. J. Chung, H. B. Kwak et al., “Tumor necrosis factor-α supports the survival of osteoclasts through the activation of Akt and ERK,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 49343–49349, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. L. Gilbert, X. He, P. Farmer et al., “Inhibition of osteoblast differentiation by tumor necrosis factor-α,” Endocrinology, vol. 141, no. 11, pp. 3956–3964, 2000. View at Scopus
  65. S. Kumar, B. J. Votta, D. J. Rieman, A. M. Badger, M. Gowen, and J. C. Lee, “IL-1- and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase,” Journal of Cellular Physiology, vol. 187, no. 3, pp. 294–303, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. L. C. Hofbauer, C. R. Dunstan, T. C. Spelsberg, B. L. Riggs, and S. Khosla, “Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines,” Biochemical and Biophysical Research Communications, vol. 250, no. 3, pp. 776–781, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. J. Huang, H. Zhang, N. Shimizu, and T. Takeda, “Triterpenoid saponins from Ardisia mamillata,” Phytochemistry, vol. 54, no. 8, pp. 817–822, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Norhaiza, M. Maziah, and M. Hakiman, “Antioxidative properties of leaf extracts of a popular Malaysian herb, Labisia pumila,” Journal of Medicinal Plant Research, vol. 3, no. 4, pp. 217–223, 2009. View at Scopus
  69. G. G. Duthie, P. T. Gardner, and J. A. M. Kyle, “Plant polyphenols: are they the new magic bullet?” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 599–603, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1315S–121S, 1995. View at Scopus
  71. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998. View at Scopus
  72. S. Y. Wang and H. Jiao, “Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical's, and singlet oxygen,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5677–5684, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Cassidy, B. Hanley, and R. M. Lamuela-Raventos, “Isoflavones, lignans and stilbenes: origins, etabolism and potential importance tohuman health,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1044–1062, 2000.
  74. P. P. Lelovas, T. T. Xanthos, S. E. Thorma, G. P. Lyritis, and I. A. Dontas, “The laboratory rat as an animal model for osteoporosis research,” Comparative Medicine, vol. 58, no. 5, pp. 424–430, 2008. View at Scopus
  75. M. Badeau, H. Adlercreutz, P. Kaihovaara, and M. J. Tikkanen, “Estrogen A-ring structure and antioxidative effect on lipoproteins,” Journal of Steroid Biochemistry and Molecular Biology, vol. 96, no. 3-4, pp. 271–278, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. M. Lean, C. J. Jagger, B. Kirstein, K. Fuller, and T. J. Chambers, “Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation,” Endocrinology, vol. 146, no. 2, pp. 728–735, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 2007.
  78. K. Naka, T. Muraguchi, T. Hoshii, and A. Hirao, “Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells,” Antioxidants and Redox Signaling, vol. 10, no. 11, pp. 1883–1894, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. D. Maggio, M. Barabani, M. Pierandrei et al., “Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1523–1527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Almeida, L. Han, M. Martin-Millan et al., “Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 27285–27297, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. F. Wauquier, L. Leotoing, V. Coxam, J. Guicheux, and Y. Wittrant, “Oxidative stress in bone remodelling and disease,” Trends in Molecular Medicine, vol. 15, no. 10, pp. 468–477, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. Y. Hayase, Y. Muguruma, and M. Y. Lee, “Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment,” Experimental Hematology, vol. 25, no. 1, pp. 19–25, 1997. View at Scopus
  83. N. K. Lee, Y. G. Choi, J. Y. Baik et al., “A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation,” Blood, vol. 106, no. 3, pp. 852–859, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. A. N. Sontakke and R. S. Tare, “A duality in the roles of reactive oxygen species with respect to bone metabolism,” Clinica Chimica Acta, vol. 318, no. 1-2, pp. 145–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Norazlina, P. L. Lee, H. I. Lukman, A. S. Nazrun, and S. Ima-Nirwana, “Effects of vitamin E supplementation on bone metabolism in nicotine-treated rats,” Singapore Medical Journal, vol. 48, no. 3, pp. 195–199, 2007. View at Scopus
  86. J. Gonzalez-Gallego, S. Sanchez-Campoz, and M. J. Tunon, “Anti-inflammatory properties of dietary flavonoids,” Nutricion Hospitalaria, vol. 22, no. 3, pp. 287–293, 2007.
  87. Y. L. Lin and J. K. Lin, “Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB,” Molecular Pharmacology, vol. 52, no. 3, pp. 465–472, 1997. View at Scopus
  88. N. Mody, F. Parhami, T. A. Sarafian, and L. L. Demer, “Oxidative stress modulates osteoblastic differentiation of vascular and bone cells,” Free Radical Biology and Medicine, vol. 31, no. 4, pp. 509–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. J. H. E. Fraser, M. H. Helfrich, H. M. Wallace, and S. H. Ralston, “Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae,” Bone, vol. 19, no. 3, pp. 223–226, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Kitazawa, R. B. Kimble, J. L. Vannice, V. T. Kung, and R. Pacifici, “Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2397–2406, 1994. View at Scopus
  91. A. S. Nazrun, P. L. Lee, M. Norliza, M. Norazlina, and N. S. Ima, “The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis,” Journal of Ethnopharmacology, vol. 133, pp. 538–542, 2011.
  92. H. N. Rosen, A. C. Moses, J. Garber et al., “Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy,” Calcified Tissue International, vol. 66, no. 2, pp. 100–103, 2000. View at Scopus