About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2012 (2012), Article ID 708178, 5 pages
http://dx.doi.org/10.1155/2012/708178
Research Article

Effect of a CNS-Sensitive Anticholinesterase Methane Sulfonyl Fluoride on Hippocampal Acetylcholine Release in Freely Moving Rats

1Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda, Morioka 020-8550, Japan
2Department of Food Safety, Pharmaceutical and Medical Safety Bureau, Ministry of Health, Labour and Welfare, Kasumigaseki, Chiyoda, Tokyo 100-8916, Japan
3Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
4Sciences of Cryobiosystems, United Graduate School of Agricultural Sciences of Iwate University, Ueda, Morioka 020-8550, Japan
57-272 Aza-Mukaishinden, Ukai, Takizawa-mura, Iwate-gun, Iwate Prefecture 020-0172, Japan

Received 30 August 2011; Revised 25 October 2011; Accepted 25 October 2011

Academic Editor: Karim A. Alkadhi

Copyright © 2012 Tamotsu Imanishi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Scopus
  2. D. R. Thal, U. Rüb, M. Orantes, and H. Braak, “Phases of Aβ-deposition in the human brain and its relevance for the development of AD,” Neurology, vol. 58, no. 12, pp. 1791–1800, 2002. View at Scopus
  3. P. E. Potter, “Investigational medications for treatment of patients with Alzheimer disease,” Journal of the American Osteopathic Association, vol. 110, supplement 8, pp. S27–S36, 2010.
  4. D. W. Ethell, “An amyloid-notch hypothesis for Alzheimer's disease,” Neuroscientist, vol. 16, no. 6, pp. 614–617, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. P. Davies and A. J. F. Maloney, “Selective loss of central cholinergic neurons in Alzheimer's disease,” The Lancet, vol. 2, no. 8000, p. 1403, 1976. View at Scopus
  6. E. J. Mufson, A. D. Kehr, B. H. Wainer, and M. M. Mesulam, “Cortical effects of neurotoxic damage to the nucleus basalis in rats: persistent loss of extrinsic cholinergic input and lack of transsynaptic effect upon the number of somatostatin-containing, cholinesterase-positive, and cholinergic cortical neurons,” Brain Research, vol. 417, no. 2, pp. 385–388, 1987. View at Scopus
  7. P. J. Whitehouse, D. L. Price, A. W. Clark, J. T. Coyle, and M. R. DeLong, “Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis,” Annals of Neurology, vol. 10, no. 2, pp. 122–126, 1981.
  8. Y. Q. Liang and X. C. Tang, “Comparative studies of huperzine A, donepezil, and rivastigmine on brain acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine levels in freely-moving rats,” Acta Pharmacologica Sinica, vol. 27, no. 9, pp. 1127–1136, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. H. Sugimoto, H. Ogura, Y. Arai, Y. Iimura, and Y. Yamanishi, “Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor,” Japanese Journal of Pharmacology, vol. 89, no. 1, pp. 7–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rosini, E. Simoni, M. Bartolini et al., “Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer's disease: a promising direction for the multi-target-directed ligands gold rush,” Journal of Medicinal Chemistry, vol. 51, no. 15, pp. 4381–4384, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. Sugimoto, “The new approach in development of anti-Alzheimer's disease drugs via the cholinergic hypothesis,” Chemico-Biological Interactions, vol. 175, no. 1–3, pp. 204–208, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. E. Moss, H. Kobayashi, G. Pacheco, R. Paracios, and R. G. Perez, “Methanesulfonyl fluoride: a CNS selective inhibitor,” in Current Research in Alzheimer Theory: Cholinesterase Inhibitors, E. Giacobini and R. Becher, Eds., pp. 305–314, Taylor and Francis, New York, NY, USA, 1988.
  13. G. Pacheco, R. Palacios-Esquivel, and D. E. Moss, “Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase,” Journal of Pharmacology and Experimental Therapeutics, vol. 274, no. 2, pp. 767–770, 1995. View at Scopus
  14. D. E. Moss, P. Berlanga, M. M. Hagan, H. Sandoval, and C. Ishida, “Methanesulfonyl fluoride (MSF): a double-blind, placebo-controlled study of safety and efficacy in the treatment of senile dementia of the Alzheimer type,” Alzheimer Disease and Associated Disorders, vol. 13, no. 1, pp. 20–25, 1999. View at Scopus
  15. M. M. Hossain, T. Suzuki, I. Sato, T. Takewaki, K. Suzuki, and H. Kobayashi, “The modulatory effect of pyrethroids on acetylcholine release in the hippocampus of freely moving rats,” NeuroToxicology, vol. 25, no. 5, pp. 825–833, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Scopus
  17. H. Kobayashi, T. Nakano, D. E. Moss, and T. Suzuki, “Effects of a central anticholinesterase, methanesulfonyl fluoride on the cerebral cholinergic system and behavior in mice: comparison with an organophosphate DDVP,” Journal of Health Science, vol. 45, no. 4, pp. 191–202, 1999. View at Scopus
  18. K. Isomae, M. Ishikawa, M. Ohta et al., “Effects of T-82, a new quinoline derivative, on cholinesterase activity and extracellular acetylcholine concentration in rat brain,” Japanese Journal of Pharmacology, vol. 88, no. 2, pp. 206–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Kosasa, Y. Kuriya, and Y. Yamanishi, “Effect of donepezil hydrochloride (E2020) on extracellular acetylcholine concentration in the cerebral cortex of rats,” Japanese Journal of Pharmacology, vol. 81, no. 2, pp. 216–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Shearman, S. Rossi, B. Szasz et al., “Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study,” Brain Research Bulletin, vol. 69, no. 2, pp. 204–213, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Takashina, T. Bessho, R. Mori, J. Eguchi, and K. I. Saito, “MKC-231, a choline uptake enhancer: (2) Effect on synthesis and release of acetylcholine in AF64A-treated rats,” Journal of Neural Transmission, vol. 115, no. 7, pp. 1027–1035, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. K. Yano, K. Koda, Y. Ago et al., “Galantamine improves apomorphine-induced deficits in prepulse inhibition via muscarinic ACh receptors in mice,” British Journal of Pharmacology, vol. 156, no. 1, pp. 173–180, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Živin and P. Pregelj, “Prolonged treatment with donepezil increases acetylcholinesterase expression in the central nervous system,” Psychiatria Danubina, vol. 20, no. 2, pp. 168–173, 2008.