About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2013 (2013), Article ID 308249, 11 pages
http://dx.doi.org/10.1155/2013/308249
Review Article

Propolis: A Wonder Bees Product and Its Pharmacological Potentials

Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Near Karvand Naka, Shirpur, Dist Dhule, Maharashtra 425405, India

Received 2 August 2013; Accepted 4 October 2013

Academic Editor: Eduardo Munoz

Copyright © 2013 Vijay D. Wagh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Burdock, “Review of the biological properties and toxicity of bee propolis (propolis),” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. V. S. Bankova, S. L. De Castro, and M. C. Marcucci, “Propolis: recent advances in chemistry and plant origin,” Apidologie, vol. 31, no. 1, pp. 3–15, 2000. View at Scopus
  3. M. Monti, E. Berti, G. Carminati, and M. Cusini, “Occupational and cosmetic dermatitis from propolis,” Contact Dermatitis, vol. 9, no. 2, p. 163, 1983. View at Scopus
  4. E. Wollenweber, B. M. Hausen, and W. Greenaway, “Phenolic constituents and sensitizing properties of propolis, poplar balsam and balsam of Peru,” Bulletin de Liaison—Groupe Polyphenols, vol. 15, pp. 112–120, 1990.
  5. K. D. Helfenberg, “The analysis of beeswax and propolis,” Chemiker Zeitungm, vol. 31, pp. 987–998, 1908.
  6. B. M. Hausen, E. Wollenweber, H. Senff, and B. Post, “Propolis allergy. (II). The sensitizing properties of 1,1-dimethylallyl caffeic acid ester,” Contact Dermatitis, vol. 17, no. 3, pp. 171–177, 1987. View at Scopus
  7. M. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995. View at Scopus
  8. Y. K. Park, S. M. Alencar, and C. L. Aguiar, “Botanical origin and chemical composition of Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 9, pp. 2502–2506, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Pietta, C. Gardana, and A. M. Pietta, “Analytical methods for quality control of propolis,” Fitoterapia, vol. 73, no. 1, pp. S7–S20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. De Castro, “Propolis: biological and pharmacological activities. Therapeutic uses of this bee-product,” Annual Review of Biomedical Sciences, vol. 3, pp. 49–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. H. Banskota, Y. Tezuka, J. K. Prasain, K. Matsushige, I. Saiki, and S. Kadota, “Chemical constituents of Brazilian propolis and their cytotoxic activities,” Journal of Natural Products, vol. 61, no. 7, pp. 896–900, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Alencar, T. L. C. Oldoni, M. L. Castro et al., “Chemical composition and biological activity of a new type of Brazilian propolis: red propolis,” Journal of Ethnopharmacology, vol. 113, no. 2, pp. 278–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Walker and E. Crane, “Constituents of propolis,” Apidologie, vol. 18, pp. 327–334, 1987.
  14. E. L. Ghisalberti, “Propolis: a review,” Bee World, vol. 60, pp. 59–84, 1979.
  15. A. Kujumgiev, I. Tsvetkova, Y. Serkedjieva, V. Bankova, R. Christov, and S. Popov, “Antibacterial, antifungal and antiviral activity of propolis of different geographic origin,” Journal of Ethnopharmacology, vol. 64, no. 3, pp. 235–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Kumar, M. K. K. Ahmad, R. Dang, and A. Husain, “Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone,” Journal of Medicinal Plants Research, vol. 2, no. 12, pp. 361–364, 2008.
  17. M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999. View at Scopus
  18. R. A. Laskar, I. Sk, N. Roy, and N. A. Begum, “Antioxidant activity of Indian propolis and its chemical constituents,” Food Chemistry, vol. 122, no. 1, pp. 233–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Roy, S. Mondal, R. A. Laskar, S. Basu, D. Mandal, and N. A. Begum, “Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents,” Colloids and Surfaces B, vol. 76, no. 1, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ugur and T. Arslan, “An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey,” Journal of Medicinal Food, vol. 7, no. 1, pp. 90–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. N. Koc, S. Silici, F. Multu-Sariguzel, and O. Sagdic, “Antifungal activity of propolis in four different fruit juices,” Food Technology and Biotechnology, vol. 45, pp. 57–.61, 2007.
  22. A. P. Farnesi, R. Aquino-Ferreira, D. De Jong, J. K. Bastos, and A. E. E. Soares, “Effects of stingless bee and honey bee propolis on four species of bacteria,” Genetics and Molecular Research, vol. 8, no. 2, pp. 635–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. N. Koç, S. Silici, F. Kasap, H. T. Hörmet-Öz, H. Mavus-Buldu, and B. D. Ercal, “Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp,” Journal of Medicinal Food, vol. 14, no. 1-2, pp. 128–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Selvan, R. Singh, and D. Prabhu, “Research article: anti-bacteria activity of bee propolis against clinical strains of Streptococcus mutants and synergism with chlorhexidine,” International Journal Pharmaceutical Studies Research, vol. 2, pp. 85–90, 2011.
  25. A. C. P. Oliveira, C. S. Shinobu, R. Longhini, S. L. Franco, and T. I. E. Svidzinski, “Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions,” The Memorias do Instituto Oswaldo Cruz, vol. 101, no. 5, pp. 493–497, 2006. View at Scopus
  26. N. K. K. Hendi, H. S. Naher, and A. H. Al-Charrakh, “In vitro antibacterial and antifungal activity of Iraqi propolis,” Journal of Medicinal Plant Research, vol. 5, no. 20, pp. 5058–5066, 2011. View at Scopus
  27. K. F. D. Dota, M. E. L. Consolaro, T. I. E. Svidzinski, and M. L. Bruschi, “Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 201953, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Grange and R. W. Davey, “Antibacterial properties of propolis (bee glue),” Journal of the Royal Society of Medicine, vol. 83, no. 3, pp. 159–160, 1990. View at Scopus
  30. I. Kosalec, S. Pepeljnjak, M. Bakmaz, and S. Vladimir-Knežević, “Flavonoid analysis and antimicrobial activity of commercially available propolis products,” Acta Pharmaceutica, vol. 55, no. 4, pp. 423–430, 2005. View at Scopus
  31. N. Kalogeropoulos, S. J. Konteles, E. Troullidou, I. Mourtzinos, and V. T. Karathanos, “Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus,” Food Chemistry, vol. 116, no. 2, pp. 452–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Fokt, A. Pereira, A. M. Ferreira, A. Cunha, and C. Aguiar, “How do bees prevent hive infections? The antimicrobial properties of propolis. Current Research, Technology and Education,” Topics in Applied Microbiology and Microbial Biotechnology, vol. 1, pp. 481–493, 2010.
  33. M. Bhadauria, “Propolis prevents hepatorenal injury induced by chronic exposure to carbon tetrachloride,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 235358, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. V. D. Wagh, R. D. Borkar, M. G. Kalaskar, P. P. Nerkar, and S. J. Surana, “HPLC method for the identification and qualitatively estimation of Tannic acid and Quercetin in Indian propolis,” in Proceedings of the National Conference on Pharmaceutical Analysis, Dr. B A. Marathwada University, Aurangabad, India, October 2011.
  35. S. Stepanović, N. Antić, I. Dakić, and M. Švabić-Vlahović, “In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs,” Microbiological Research, vol. 158, no. 4, pp. 353–357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Yaghoubi, G. Ghorbani, S. Soleimanian Zad, and R. Satari, “Antimicrobial activity of Iranian propolis and its chemical composition,” Daru, vol. 15, no. 1, pp. 45–48, 2007. View at Scopus
  37. L. Drago, B. Mombelli, E. De Vecchi, M. C. Fassina, L. Tocalli, and M. R. Gismondo, “In vitro antimicrobial activity of propolis dry extract,” Journal of Chemotherapy, vol. 12, no. 5, pp. 390–395, 2000. View at Scopus
  38. J. M. Sforcin, A. Fernandes Jr., C. A. M. Lopes, V. Bankova, and S. R. C. Funari, “Seasonal effect on Brazilian propolis antibacterial activity,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 243–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Kartal, S. Yildiz, S. Kaya, S. Kurucu, and G. Topçu, “Antimicrobial activity of propolis samples from two different regions of Anatolia,” Journal of Ethnopharmacology, vol. 86, no. 1, pp. 69–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. W. Dobrowolski, S. B. Vohora, K. Sharma, S. A. Shah, S. A. H. Naqvi, and P. C. Dandiya, “Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products,” Journal of Ethnopharmacology, vol. 35, no. 1, pp. 77–82, 1991. View at Scopus
  41. H. EI Fadaly and E. E. Y. EI Badrawy, “Flavonoids of propolis and their antibacterial activities,” Pakistan Journal Biological Science, vol. 21, pp. 204–207, 2001.
  42. W. Krol, S. Scheller, J. Shani, G. Pietsz, and Z. Czuba, “Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of Staphylococcus aureus,” Arzneimittel-Forschung/Drug Research, vol. 43, no. 5, pp. 607–609, 1993. View at Scopus
  43. S. Castaldo and F. Capasso, “Propolis, an old remedy used in modern medicine,” Fitoterapia, vol. 73, no. 1, pp. S1–S6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Fernandes, E. C. D. Balestrin, and M. L. R. S. Cunha, “Anti-Staphylococcus aureus activity of bee propolis extracts prepared with different ethanol concentrations,” Farm Science Review's, vol. 24, pp. 147–152, 2003.
  45. M. Popova, V. Bankova, I. Tsvetkova, and A. Kujumgiev, “Comparative study of the biological activity of propolis from different geographic origin: a statistical approach,” Macedonian Pharmaceutical Bulletin, vol. 50, pp. 9–14, 2004.
  46. K. Bosio, C. Avanzini, A. D'Avolio, O. Ozino, and D. Savoia, “In vitro activity of propolis against Streptococcus pyogenes,” Letters in Applied Microbiology, vol. 31, no. 2, pp. 174–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. F. A. Santos, E. M. A. Bastos, M. Uzeda et al., “Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. O. Orsi, J. M. Sforcin, V. L. M. Rall, S. R. C. Funari, L. Barbosa, and A. Fernandes, “Susceptibility profile of Salmonella against the antibacterial activity of propolis produced in two regions of Brazil,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 11, pp. 109–116, 2005.
  49. V. Benkovic, A. Horvat Knezevic, D. Dikic et al., “Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay,” Phytomedicine, vol. 15, no. 10, pp. 851–858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. L. De Castro, K. Salomão, E. M. De Souza, A. Henriques-Pons, and H. S. Barbosa, “Brazilian green propolis: effects in vitro and in vivo on Trypanosoma cruzi,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 185918, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Torres, I. Hollands, and E. Palacios, “Effect of an alcoholic extract of propolis on the in vitro growth of Giardia lamblia 720,” Journal of Veterinary Science, vol. 21, no. 1, pp. 15–19, 1990.
  52. A. P. Dantas, B. P. Olivieri, F. H. M. Gomes, and S. L. de Castro, “Treatment of Trypanosoma cruzi-infected mice with propolis promotes changes in the immune response,” Journal of Ethnopharmacology, vol. 103, no. 2, pp. 187–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Oršolić, A. B. Šaranović, and I. Bašić, “Direct and indirect mechanism(s) of antitumour activity of propolis and its polyphenolic compounds,” Planta Medica, vol. 72, no. 1, pp. 20–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Cuesta, A. Rodríguez, M. Á. Esteban, and J. Meseguer, “In vivo effects of propolis, a honeybee product, on gilthead seabream innate immune responses,” Fish and Shellfish Immunology, vol. 18, no. 1, pp. 71–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Sayed, G. A. Abou EI-Ella, N. M. Wahba et al., “Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection,” Journal of Medicinal Food, vol. 12, no. 3, pp. 569–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Fischer, F. R. Conceição, F. P. L. Leite et al., “Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1,” Vaccine, vol. 25, no. 7, pp. 1250–1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. F. Osman and E. A. Taha, “Anti-oxidant activity of water extract of propolis from different regions in Kafr El-Sheikh Governorate,” Alexandria Juornal of Food Science and Technology, vol. 1, pp. 83–89, 2008.
  58. D. Popeskovic, D. Kepcija, D. Dimitijevic, and N. Stojanovic, “The antioxidative properties of propolis and some of its components,” Acta Veterinaria, vol. 30, pp. 133–136, 1980.
  59. J.-Q. Zhao, Y.-F. Wen, M. Bhadauria et al., “Protective effects of propolis on inorganic mercury induced oxidative stress in mice,” Indian Journal of Experimental Biology, vol. 47, no. 4, pp. 264–269, 2009. View at Scopus
  60. M. G. Miguel, S. Nunes, S. A. Dandlen, A. M. Cavaco, and M. D. Antunes, “Phenols and antioxidant activity of hydro-alcoholic extracts of propolis from Algarve, South of Portugal,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3418–3423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Cruz, A. M. Cavaco, R. Guerra, D. Aantunes, H. Guia, and M. G. Miguel, “A first approach to the optical and antioxidant properties of propolis collected at different sites of algarve region,” in Proceedings of the 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, Algarve, Portugal, June 2008.
  62. M. G. Miguel, S. Nunes, S. A. Dandlen S, A. M. Cavaco, and M. D. Antunes, “Antioxidant activity of propolis from algarve,” Advances in Environmental Biology, vol. 5, no. 2, pp. 345–350, 2011. View at Scopus
  63. N. Oolic, “A review of propolis antitumour action in vivo and in vitro,” Java Authentication and Authorization Service, vol. 2, pp. 1–20, 2010.
  64. M.-R. Ahn, K. Kunimasa, T. Ohta et al., “Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation,” Cancer Letters, vol. 252, no. 2, pp. 235–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Bankova, M. Popova, and B. Trusheva, “Plant origin of propolis: latest developments and importance for research and medicinal use,” in Beekeeping-from Science to Agribusiness and Apitherapy, L. A. Marghitas and D. Dezmirean, Eds., pp. 40–46, Editura Academic Press, Cluj-Napoca, Romania, 2007.
  66. N. Oršolić, K. Bendelja, A. Brbot-Šaranović, and I. Bašić, “Effects of caffeic acid and caffeic acid phenethyl ester, an antioxidants from propolis, on inducing apoptosis in HeLa human cervical carcinoma and Chinese hamster lung V79 fibroblast cells,” Periodicum Biologorum, vol. 106, no. 4, pp. 367–372, 2004. View at Scopus
  67. V. Bankova, “Chemical diversity of propolis makes it a valuable source of new biologically active compounds,” Journal of ApiProduct and ApiMedical Science, vol. 1, pp. 23–28, 2009.
  68. N. Oršolić, S. Terzić, Ž. Mihaljević, L. Šver, and I. Bašić, “Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 1928–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Ozkul, S. Silici, and E. Eroǧlu, “The anticarcinogenic effect of propolis in human lymphocytes culture,” Phytomedicine, vol. 12, no. 10, pp. 742–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. E. C. D. Almeida and H. Menezes, “Anti-inflammatory activity of propolis extracts: a review 2104,” Journal of Venomous Animals and Toxins, vol. 8, pp. 191–212, 2002.
  71. F. Borrelli, P. Maffia, L. Pinto et al., “Phytochemical compounds involved in the anti-inflammatory effect of propolis extract,” Fitoterapia, vol. 73, no. 1, pp. S53–S63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Du Toit, S. Buthelezi, and J. Bodenstein, “Anti-inflammatory and antibacterial profiles of selected compounds found in south african Propolis,” South African Journal of Science, vol. 105, no. 11-12, pp. 470–472, 2009. View at Scopus
  73. O. K. Mirzoeva and P. C. Calder, “The effect of propolis and its components on eicosanoid production during the inflammatory response,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 55, no. 6, pp. 441–449, 1996. View at Publisher · View at Google Scholar · View at Scopus
  74. O. M. Abo-Salem, R. H. El-Edel, G. E. I. Harisa, N. El-Halawany, and M. M. Ghonaim, “Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 2, pp. 205–210, 2009. View at Scopus
  75. F. Hu, W. Zhu, M. Chen, Q. Shou, and Y. Li, “Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 468529, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Dimov, N. Ivanovska, S. Popov, and V. Bankova, “Immunomodulatory action of propolis: IV. Prophylactic activity against Gram-negative infections and adjuvant effect of the water-soluble derivative,” Vaccine, vol. 10, no. 12, pp. 817–823, 1992. View at Scopus
  77. O. Koru, F. Toksoy, C. H. Acikel et al., “In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens,” Anaerobe, vol. 13, no. 3-4, pp. 140–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Saavedra, L. Barrientos, C. L. Herrera, M. Alvear, G. Montenegro, and L. A. Salazar, “Effect of Chilean propolis on cariogenic bacteria Lactobacillus fermentum,” Ciencia e Investigacion Agraria, vol. 38, no. 1, pp. 117–125, 2011. View at Scopus
  79. J. M. Sforcin, E. L. B. Novelli, and S. R. C. Funari, “Seasonal effect of Brazilian propolis on seric biochemical variables,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 8, pp. 244–254, 2002.
  80. F. Mani, H. C. R. Damasceno, E. L. B. Novelli, E. A. M. Martins, and J. M. Sforcin, “Propolis: effect of different concentrations, extracts and intake period on seric biochemical variables,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 95–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Mani, H. C. R. Damasceno, E. L. B. Novelli, and J. M. Sforcin, “Biochemical determinations of propolis-treated rats: effects of different concentrations, extracts and intake period,” Biosaude, vol. 10, no. 1, pp. 3–16, 2008.
  82. J. M. Sforcin, “Propolis and the immune system: a review,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. O. Rudeschko, A. Machnik, H. Dörfelt, H.-H. Kaatz, B. Schlott, and R. W. Kinne, “A novel inhalation allergen present in the working environment of beekeepers,” Allergy, vol. 59, no. 3, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. O. Gulbahar, G. Ozturk, N. Erdem, A. C. Kazandi, and A. Kokuludag, “Psoriasiform contact dermatitis due to propolis in a beekeeper,” Annals of Allergy, Asthma and Immunology, vol. 94, no. 4, pp. 509–511, 2005. View at Scopus
  85. J. Hellgren, A. Cervin, S. Nordling, A. Bergman, and L. O. Cardell, “Allergic rhinitis and the common cold—high cost to society,” Allergy, vol. 65, no. 6, pp. 776–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. L. B. Sy, Y.-L. Wu, B.-L. Chiang, Y.-H. Wang, and W.-M. Wu, “Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model,” International Immunopharmacology, vol. 6, no. 7, pp. 1053–1060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. W.-K. Jung, D.-Y. Lee, Y. H. Choi et al., “Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma,” Life Sciences, vol. 82, no. 13-14, pp. 797–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. G. B. Avanço and M. L. Braschi, “Preparation and characterization of ethylcellulose microparticles containing propolis,” Journal Basic and Applied Sciences, vol. 29, no. 2, pp. 129–134, 2008. View at Scopus
  89. B. Trusheva, M. Popova, V. Bankova, I. Tsvetkova, C. Naydensky, and A. G. Sabatini, “A new type of European propolis containing bioactive labdanes,” Rivista Italiana EPPOS, vol. 36, pp. 3–7, 2003.
  90. S. Kumazawa, K. Hayashi, K. Kajiya, T. Ishii, T. Hamasaka, and T. Nakayama, “Studies of the constituents of Uruguayan propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 17, pp. 4777–4782, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. A. N. Hirata and M. L. Bruschi, “Development and characterization of semisolid systems to deliver propolis in the oral cavity,” Journal Basic Applied Science, vol. 31, no. 1, pp. 33–39, 2010. View at Scopus