About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2013 (2013), Article ID 506191, 7 pages
http://dx.doi.org/10.1155/2013/506191
Research Article

Dehydroepiandrosterone Stimulates Nerve Growth Factor and Brain Derived Neurotrophic Factor in Cortical Neurons

1Stem Cell and Tissue Engineering Department, Research Center for Science and Technology in Medicine (RCSTiM), Tehran University of Medical Sciences, Tehran 19988-96953, Iran
2Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 19988-96953, Iran
3Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences, Tehran 19969-14151, Iran
4Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad 91779-48564, Iran

Received 13 August 2013; Revised 15 October 2013; Accepted 15 October 2013

Academic Editor: Karim A. Alkadhi

Copyright © 2013 Anahita Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Due to the increasing cases of neurodegenerative diseases in recent years, the eventual goal of nerve repair is very important. One approach for achieving a neuronal cell induction is by regenerative pharmacology. Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are neurotrophins that play roles in neuronal development, differentiation, and protection. On the other hand, dehydroepiandrosterone (DHEA) is a neurosteroid which has multiple actions in the nervous system. DHEA could be an important agent in regenerative pharmacology for neuronal differentiation during tissue regeneration. In this study, we investigated the possible role of DHEA to modulate NGF and BDNF production. The in vivo level of neurotrophins expression was demonstrated by ELISA in rat harvested brain cortex. Also neurotrophins expression after DHEA treatment was revealed by the increased neurite extension, immunostaining, and BrdU labeling in rats. Anti-NGF and anti-BDNF antibodies were used as suppressive agents on neurogenesis. The results showed that NGF and BDNF are overproduced after DHEA treatment but there is not any overexpression for NT-3 and NT-4. Also DHEA increased neurite extension and neural cell proliferation significantly. Overall, DHEA might induce NGF and BDNF neurotrophins overproduction in cortical neurons which promotes neural cell protection, survival, and proliferation.