About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2013 (2013), Article ID 506191, 7 pages
http://dx.doi.org/10.1155/2013/506191
Research Article

Dehydroepiandrosterone Stimulates Nerve Growth Factor and Brain Derived Neurotrophic Factor in Cortical Neurons

1Stem Cell and Tissue Engineering Department, Research Center for Science and Technology in Medicine (RCSTiM), Tehran University of Medical Sciences, Tehran 19988-96953, Iran
2Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 19988-96953, Iran
3Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences, Tehran 19969-14151, Iran
4Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad 91779-48564, Iran

Received 13 August 2013; Revised 15 October 2013; Accepted 15 October 2013

Academic Editor: Karim A. Alkadhi

Copyright © 2013 Anahita Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Berkemeier, J. W. Winslow, D. R. Kaplan, K. Nikolics, D. V. Goeddel, and A. Rosenthal, “Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB,” Neuron, vol. 7, no. 5, pp. 857–866, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Noureddini, J. Verdi, S. A. Mortazavi Tabatabaei, S. Sharif, and A. Shoae-Hassani, “Human endometrial stem cell neurogenesis in response to NGF and bFGF,” Cell Biology International, vol. 36, pp. 961–966, 2012.
  3. R. Levi-Montalcini, “The nerve growth factor: thirty-five years later,” The EMBO Journal, vol. 6, no. 5, pp. 1145–1154, 1987. View at Scopus
  4. A. M. Davies, “The role of neurotrophins in the developing nervous system,” Journal of Neurobiology, vol. 25, no. 11, pp. 1334–1348, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ahmed, B. A. Reynolds, and S. Weiss, “BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors,” The Journal of Neuroscience, vol. 15, no. 8, pp. 5765–5778, 1995. View at Scopus
  6. N. A. Compagnone and S. H. Mellon, “Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4678–4683, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Shoae-Hassani, S. A. Mortazavi-Tabatabaei, S. Sharif, H. Rezaei-Khaligh, and J. Verdi, “DHEA provides a microenvironment for endometrial stem cells neurogenesis,” Medical Hypotheses, vol. 76, no. 6, pp. 843–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. G. Kimonides, N. H. Khatibi, C. N. Svendsen, M. V. Sofroniew, and J. Herbert, “Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1852–1857, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Bastianetto, C. Ramassamy, J. Poirier, and R. Quirion, “Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage,” Molecular Brain Research, vol. 66, no. 1-2, pp. 35–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. V. G. Kimonides, M. G. Spillantini, M. V. Sofroniew, J. W. Fawcett, and J. Herbert, “Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures,” Neuroscience, vol. 89, no. 2, pp. 429–436, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Chopp and Y. Li, “Treatment of neural injury with marrow stromal cells,” The Lancet Neurology, vol. 1, no. 2, pp. 92–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Durand, S. Aguerre, F. Fernandez et al., “Strain-dependent neurochemical and neuroendocrine effects of desipramine, but not fluoxetine or imipramine, in Spontaneously Hypertensive and Wistar-Kyoto rats,” Neuropharmacology, vol. 39, no. 12, pp. 2464–2477, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Tejani-Butt, J. Kluczynski, and W. P. Paré, “Strain-dependent modification of behavior following antidepressant treatment,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 1, pp. 7–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. Will, F. Aird, and E. E. Redei, “Selectively bred Wistar-Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants,” Molecular Psychiatry, vol. 8, no. 11, pp. 925–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Malkesman, T. Asaf, L. Shbiro et al., “Monoamines, BDNF, dehydroepiandrosterone, DHEA-Sulfate, and childhood depression: an animal model study,” Advances in Pharmacological Sciences, vol. 2009, Article ID 405107, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. N. Pechnick, S. Zonis, K. Wawrowsky, J. Pourmorady, and V. Chesnokova, “p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1358–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Maayan, O. Morad, P. Dorfman, D. H. Overstreet, A. Weizman, and G. Yadid, “The involvement of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) in blocking the therapeutic effect of electroconvulsive shocks in an animal model of depression,” European Neuropsychopharmacology, vol. 15, no. 3, pp. 253–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. A. Barde, D. Edgar, and H. Thoenen, “Purification of a new neurotrophic factor from mammalian brain,” The EMBO Journal, vol. 1, no. 5, pp. 549–553, 1982. View at Scopus
  19. A. Rahmani, D. Kheradmand, P. Keyhanvar, A. Shoae-Hassani, and A. Darbandi-Azar, “Neurogenesis and increase in differentiated neural cell survival via phosphorylation of Akt1 after fluoxetine treatment of stem cells,” BioMed Research International, vol. 2013, Article ID 582526, 9 pages, 2013. View at Publisher · View at Google Scholar
  20. K. K. Karishma and J. Herbert, “Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression,” European Journal of Neuroscience, vol. 16, no. 3, pp. 445–453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Suzuki, L. S. Wright, P. Marwah, H. A. Lardy, and C. N. Svendsen, “Mitotic neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived the fetal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3202–3207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Shoae-Hassani, S. Sharif, and J. Verdi, “The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming,” Cell Biology International, vol. 35, no. 10, pp. 1037–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. I. Åberg, N. D. Åberg, H. Hedbäcker, J. Oscarsson, and P. S. Eriksson, “Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus,” The Journal of Neuroscience, vol. 20, no. 8, pp. 2896–2903, 2000. View at Scopus
  24. A. J. Morales, J. J. Nolan, J. C. Nelson, and S. S. C. Yen, “Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age,” Journal of Clinical Endocrinology and Metabolism, vol. 78, pp. 1360–1367, 1994.
  25. I. Charalampopoulos, V. Alexaki, C. Tsatsanis et al., “Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging,” Annals of the New York Academy of Sciences, vol. 1088, pp. 139–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Korte, H. Kang, T. Bonhoeffer, and E. Schuman, “A role for BDNF in the late-phase of hippocampal long-term potentiation,” Neuropharmacology, vol. 37, no. 4-5, pp. 553–559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Lindholm, E. Castren, M. Berzaghi, A. Blochl, and H. Thoenen, “Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain: implications for neuronal plasticity,” Journal of Neurobiology, vol. 25, no. 11, pp. 1362–1372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. E. M. Gubba, J. W. Fawcett, and J. Herbert, “The effects of corticosterone and dehydroepiandrosterone on neurotrophic factor mRNA expression in primary hippocampal and astrocyte cultures,” Molecular Brain Research, vol. 127, no. 1-2, pp. 48–59, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Lazaridis, I. Charalampopoulos, V. Alexaki et al., “Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis,” PLoS Biology, vol. 9, no. 4, Article ID e1001051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. M. Pham, B. Ickes, D. Albeck, S. Söderström, A.-C. Granholm, and A. H. Mohammed, “Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year,” Neuroscience, vol. 94, no. 1, pp. 279–286, 1999. View at Publisher · View at Google Scholar · View at Scopus