About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2013 (2013), Article ID 718313, 8 pages
http://dx.doi.org/10.1155/2013/718313
Research Article

Comparative In Vitro Effects of Calcineurin Inhibitors on Functional Vascular Relaxations of Both Rat Thoracic and Abdominal Aorta

1Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
2Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7J 5B6
3Saskatchewan Transplant Program, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, Canada S7N 0W8

Received 17 April 2013; Accepted 2 June 2013

Academic Editor: Masahiro Oike

Copyright © 2013 Ashok Jadhav et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Weis and W. von Scheidt, “Cardiac allograft vasculopathy: a review,” Circulation, vol. 96, no. 6, pp. 2069–2077, 1997. View at Scopus
  2. Z. Liu, S. M. Wildhirt, S. Weismüller, C. Schulze, N. Conrad, and B. Reichart, “Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions,” Atherosclerosis, vol. 140, no. 1, pp. 1–14, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Weis, S. M. Wildhirt, C. Schulze et al., “Impact of immunosuppression on coronary endothelial function after cardiac transplantation,” Transplantation Proceedings, vol. 30, no. 3, pp. 871–872, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. B. B. K. Chan, J. A. Kern, T. L. Flanagan, I. L. Kron, and C. G. Tribble, “Effects of in vivo cyclosporine administration on endothelium-dependent responses in isolated vascular rings,” Circulation, vol. 86, supplement 5, pp. II295–II299, 1992. View at Scopus
  5. K. Sudhir, J. S. MacGregor, T. DeMarco et al., “Cyclosporine impairs release of endothelium-derived relaxing factors in epicardial and resistance coronary arteries,” Circulation, vol. 90, no. 6, pp. 3018–3023, 1994. View at Scopus
  6. R. Cartier, P. Mathieu, D. Bouchard, and J. Buluran, “Effects of cyclosporine A dosage on vascular tone of the rat thoracic aorta,” Annales de Chirurgie, vol. 50, no. 8, pp. 667–672, 1996. View at Scopus
  7. Y. Takeda, I. Miyamori, K. Furukawa, S. Inaba, and H. Mabuchi, “Mechanisms of FK 506-induced hypertension in the rat,” Hypertension, vol. 33, no. 1 I, pp. 130–136, 1999. View at Scopus
  8. A. O. Lungu, Z. Jin, H. Yamawaki, T. Tanimoto, C. Wong, and B. C. Berk, “Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae,” The Journal of Biological Chemistry, vol. 279, no. 47, pp. 48794–48800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. C. Textor, R. Wiesner, D. J. Wilson et al., “Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients,” Transplantation, vol. 55, no. 6, pp. 1332–1339, 1993. View at Scopus
  10. M. Verbeke, J. Van de Voorde, L. De Ridder, and N. Lameire, “Functional analysis of vascular dysfunction in cyclosporin treated rats,” Cardiovascular Research, vol. 28, no. 8, pp. 1152–1156, 1994. View at Scopus
  11. M. Verbeke, J. Van de Voorde, L. De Ridder, and N. Lameire, “Regional differences in vasculotoxic effects of cyclosporin in rats,” Canadian Journal of Physiology and Pharmacology, vol. 73, no. 11, pp. 1661–1668, 1995. View at Scopus
  12. R. L. Hopfner, R. V. Hasnadka, T. W. Wilson, J. R. McNeill, and V. Gopalakrishnan, “Insulin increases endothelin-1-evoked intracellular free calcium responses by increased ET(A)receptor expression in rat aortic smooth muscle cells,” Diabetes, vol. 47, no. 6, pp. 937–944, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Jadhav, W. Liang, J. Balsevich et al., “L-Tryptophan ethyl ester dilates small mesenteric arteries by inhibition of voltage-operated calcium channels in smooth muscle,” British Journal of Pharmacology, vol. 166, no. 1, pp. 232–242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Textor, V. J. Canzanello, S. J. Taler et al., “Cyclosporine-induced hypertension after transplantation,” Mayo Clinic Proceedings, vol. 69, no. 12, pp. 1182–1193, 1994. View at Scopus
  15. M. Marasà, G. Remuzzi, and P. Cravedi, “Hypertension after kidney transplantation: an important, but still neglected issue,” Journal of Hypertension, vol. 29, no. 12, pp. 2310–2311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. J. Hoorn, S. B. Walsh, J. A. McCormick, R. Zietse, R. J. Unwin, and D. H. Ellison, “Pathogenesis of calcineurin inhibitor-induced hypertension,” Journal of Nephrology, vol. 25, pp. 269–275, 2012.
  17. F. Seibert, C. Behrendt, S. Schmidt, M. van der Giet, W. Zidek, and T. H. Westhoff, “Differential effects of cyclosporine and tacrolimus on arterial function,” Transplant International, vol. 24, no. 7, pp. 708–715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Stepkowski, “Molecular targets for existing and novel immunosuppressive drugs,” Expert Reviews in Molecular Medicine, vol. 2, pp. 1–23, 2000.
  19. A. R. Marks, “Cellular functions of immunophilins,” Physiological Reviews, vol. 76, no. 3, pp. 631–649, 1996. View at Scopus
  20. T. Goto, T. Kino, H. Hatanaka et al., “FK 506: historical perspectives,” Transplantation Proceedings, vol. 23, no. 6, pp. 2713–2717, 1991. View at Scopus
  21. J. Asbún-Bojalil, E. F. Castillo, B. A. Escalante, and C. Castillo, “Does segmental difference in α1-adrenoceptor subtype explain contractile difference in rat abdominal and thoracic aortae?” Vascular Pharmacology, vol. 38, no. 3, pp. 169–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Agnew, E. Robinson, C. M. McVicar et al., “The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling,” British Journal of Pharmacology, vol. 166, no. 1, pp. 327–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Zhang, H. H. Ran, Y. X. Zhang et al., “Farnesoid X receptor regulates vascular reactivity through nitric oxide mechanism,” Journal of Physiology and Pharmacology, vol. 63, pp. 367–372, 2012.
  24. R. Busse, G. Edwards, M. Félétou, I. Fleming, P. M. Vanhoutte, and A. H. Weston, “EDHF: bringing the concepts together,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 374–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Bobadilla, C. C. Henkel, E. C. Henkel, B. Escalante, and E. Hong, “Possible involvement of endothelium-derived hyperpolarizing factor in vascular responses of abdominal aorta from pregnant rats,” Hypertension, vol. 30, no. 3, pp. 596–602, 1997. View at Scopus
  26. H. Tomioka, Y. Hattori, M. Fukao et al., “Relaxation in different-sized rat blood vessels mediated by endothelium- derived hyperpolarizing factor: importance of processes mediating precontractions,” Journal of Vascular Research, vol. 36, no. 4, pp. 311–320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. O. L. Woodman, O. Wongsawatkul, and C. G. Sobey, “Contribution of nitric oxide, cyclic GMP and K+ channels to acetylcholine-induced dilatation of rat conduit and resistance arteries,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 1-2, pp. 34–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Kwan, W. Zhang, S. Sim, T. Deyama, and S. Nishibe, “Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 5, pp. 473–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. M. Shing, R. G. Fassett, L. Brown, and J. S. Coombes, “The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats,” Transplant International, vol. 25, no. 3, pp. 337–346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Galle, C. Lehmann-Bodem, U. Hübner, A. Heinloth, and C. Wanner, “CyA and OxLDL cause endothelial dysfunction in isolated arteries through endothelin-mediated stimulation of O(2)(-) formation,” Nephrology Dialysis Transplantation, vol. 15, no. 3, pp. 339–346, 2000. View at Scopus
  31. The US Multicenter FK506 Liver Study Group, “A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation,” The New England Journal of Medicine, vol. 331, no. 17, pp. 1110–1115, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. L. G. Cook, V. L. Chiasson, C. Long, G. Wu, and B. M. Mitchell, “Tacrolimus reduces nitric oxide synthase function by binding to FKBP rather than by its calcineurin effect,” Kidney International, vol. 75, no. 7, pp. 719–726, 2009. View at Publisher · View at Google Scholar · View at Scopus