About this Journal Submit a Manuscript Table of Contents
Advances in Pharmacological Sciences
Volume 2014 (2014), Article ID 532969, 6 pages
http://dx.doi.org/10.1155/2014/532969
Research Article

Effects of Melatonin and Epiphyseal Proteins on Fluoride-Induced Adverse Changes in Antioxidant Status of Heart, Liver, and Kidney of Rats

1Division of Physiology and Climatology, Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh 243122, India
2Nutrition and Toxicology Laboratory, Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organization (DRDO), Ministry of Defence, C/o- 56 APO, Leh 194101, India
3Division of Animal Reproduction, Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh 243122, India
4Somnogen Inc., College Street, Toronto, ON, Canada M6H 1C5
5Department of Psychiatry, Faculty of Medicine, University of Toronto and Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8

Received 11 January 2014; Revised 24 February 2014; Accepted 25 February 2014; Published 26 March 2014

Academic Editor: Mustafa F. Lokhandwala

Copyright © 2014 Vijay K. Bharti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Rzeuski, D. Chlubek, and Z. Machoy, “Interactions between fluoride and biological free radical reactions,” Fluoride, vol. 31, no. 1, pp. 43–45, 1998. View at Scopus
  2. X. Y. Guo, G. F. Sun, and Y. C. Sun, “Oxidative stress from fluoride-induced hepatotoxicity in rats,” Fluoride, vol. 36, no. 1, pp. 25–29, 2003. View at Scopus
  3. D. Shanthakumari, S. Srinivasalu, and S. Subramanian, “Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats,” Toxicology, vol. 204, no. 2-3, pp. 219–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Zhao, J. Wang, F. Wu et al., “Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles,” Journal of Hazardous Materials, vol. 173, no. 1–3, pp. 102–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Gutiérrez-Salinas, J. A. Morales-González, E. Madrigal-Santillán et al., “Exposure to sodium fluoride produces signs of apoptosis in rat leukocytes,” International Journal of Molecular Sciences, vol. 11, no. 9, pp. 3610–3622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Morales-González, J. Gutiérrez-Salinas, L. García-Ortiz et al., “Effect of sodium fluoride ingestion on malondialdehyde concentration and the activity of antioxidant enzymes in rat erythrocytes,” International Journal of Molecular Sciences, vol. 11, no. 6, pp. 2443–2452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. M. Shivarajashankara, A. R. Shivashankara, P. Gopalakrishna Bhat, and S. Hanumanth Rao, “Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats,” Fluoride, vol. 34, no. 2, pp. 108–113, 2001. View at Scopus
  8. B. Halliwell, J. M. C. Gutteridge, and C. E. Cross, “Free radicals, antioxidants, and human disease: where are we now?” Journal of Laboratory and Clinical Medicine, vol. 119, no. 6, pp. 598–620, 1992. View at Scopus
  9. C. D. Filippo, S. Cuzzocrea, F. Rossi, R. Marfella, and M. D'Amico, “Oxidative stress as the leading cause of acute myocardial infarction in diabetics,” Cardiovascular Drug Reviews, vol. 24, no. 2, pp. 77–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. J. Chinoy and M. R. Memon, “Beneficial effects of some vitamins and calcium on fluoride and aluminium toxicity on gastrocnemius muscle and liver of male mice,” Fluoride, vol. 34, no. 1, pp. 21–33, 2001. View at Scopus
  11. A. K. Susheela, “Fluorosis management programme in India,” Current Science, vol. 77, no. 10, pp. 1250–1256, 1999. View at Scopus
  12. V. Simonneaux and C. Ribelayga, “Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters,” Pharmacological Reviews, vol. 55, no. 2, pp. 325–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Zhang, W. Li, Q. Gao, and T. Wei, “Effect of melatonin on the generation of nitric oxide in murine macrophages,” European Journal of Pharmacology, vol. 501, no. 1–3, pp. 25–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Huculeci, D. Dinu, A. C. Staicu, M. C. Munteanu, M. Costache, and A. Dinischiotu, “Malathion-induced alteration of the antioxidant defence system in kidney, gill, and intestine of Carassius auratus gibelio,” Environmental Toxicology, vol. 24, no. 6, pp. 523–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. L. Chawla, R. Yadav, D. Shah, and M. V. Rao, “Protective action of melatonin against fluoride-induced hepatotoxicity in adult female mice,” Fluoride, vol. 41, no. 1, pp. 44–51, 2008. View at Scopus
  16. V. Sejian, Studies on pineal-adrenal relationship in goats (Capra hircus) under thermal stress [Ph.D. thesis], Indian Veterinary Research Institute, Izatnagar, India, 2006.
  17. M. Tandon, R. S. Srivastava, S. K. Meur, and M. Saini, “Proteins and peptides present in pineal gland and other brain structures of buffaloes,” Indian Journal of Animal Sciences, vol. 76, no. 5, pp. 383–384, 2006. View at Scopus
  18. V. K. Bharti and R. S. Srivastava, “Fluoride-induced oxidative stress in rat's brain and its amelioration by buffalo (Bubalus bubalis) pineal proteins and melatonin,” Biological Trace Element Research, vol. 130, no. 2, pp. 131–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. V. K. Bharti and R. S. Srivastava, “Protective role of buffalo pineal proteins on arsenic-induced oxidative stress in blood and kidney of rats,” Health, vol. 1, no. 3, pp. 167–172, 2009. View at Publisher · View at Google Scholar
  20. V. K. Bharti and R. S. Srivastava, “Effects of epiphyseal proteins and melatonin on blood biochemical parameters of fluoride-intoxicated rats,” Neurophysiology, vol. 42, no. 4, pp. 258–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. V. K. Bharti and R. S. Srivastava, “Effect of pineal proteins at different dose level on fluoride-induced changes in plasma biochemicals and blood antioxidants enzymes in rats,” Biological Trace Element Research, vol. 141, no. 1–3, pp. 275–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. V. K. Bharti, R. S. Srivastava, J. K. Malik, D. W. Spence, S. R. Pandi-Perumal, and G. M. Brown, “Evaluation of blood antioxidant defense and apoptosis in peripheral lymphocytes on exogenous administration of pineal proteins and melatonin in rats,” Journal of Physiology and Biochemistry, vol. 68, no. 2, pp. 237–245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. V. K. Bharti, R. S. Srivastava, B. Sharma, and J. K. Malik, “Buffalo (Bubalus bubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats,” Biological Trace Element Research, vol. 146, no. 2, pp. 224–229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S.-U. Rehman, “Lead-induced regional lipid peroxidation in brain,” Toxicology Letters, vol. 21, no. 3, pp. 333–337, 1984. View at Scopus
  25. J. Sedlak and R. H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent,” Analytical Biochemistry C, vol. 25, pp. 192–205, 1968. View at Scopus
  26. H. U. Bergmayer, “UV method of catalase assay,” in Methods of Enzymatic Analysis, vol. 3rd, p. 273, Chemie, Weinheim, Germany, 1983.
  27. M. Madesh and K. A. Balasubramanian, “Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide,” Indian Journal of Biochemistry and Biophysics, vol. 35, no. 3, pp. 184–188, 1998. View at Scopus
  28. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Scopus
  29. D. M. Goldberg and R. J. Spooner, “Glutathione reductase,” in Methods in Enzymatic Analysis, J. Bergmeyer and M. Grassi, Eds., pp. 258–265, VCH, Weinheim, Germany, 1983.
  30. O. H. Lowry, N. J. Rosebrough, A. I. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Scopus
  31. N. J. Chinoy and T. N. Patel, “The influence of fluoride and/or aluminium on free radical toxicity in the brain of female mice and beneficial effects of some antidotes,” Fluoride, vol. 33, p. 8, 2000.
  32. D. X. Tan, L. C. Manchester, M. P. Terron, L. J. Flores, and R. J. Reiter, “One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?” Journal of Pineal Research, vol. 42, no. 1, pp. 28–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. M. Shivarajashankara, A. R. Shivashankara, P. Gopalakrishna Bhat, and S. Hanumanth Rao, “Lipid peroxidation and antioxidant systems in the blood of young rats subjected to chronic fluoride toxicity,” Indian Journal of Experimental Biology, vol. 41, no. 8, pp. 857–860, 2003. View at Scopus
  34. L. R. Chioca, I. M. Raupp, C. Da Cunha, E. M. Losso, and R. Andreatini, “Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats,” European Journal of Pharmacology, vol. 579, no. 1–3, pp. 196–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Yan and J. J. Harding, “Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase,” Biochemical Journal, vol. 328, no. 2, pp. 599–605, 1997. View at Scopus
  36. R. F. Burk, “Glutathione-dependent protection by rat liver microsomal protein against lipid peroxidation,” Biochimica et Biophysica Acta-General Subjects, vol. 757, no. 1, pp. 21–28, 1983. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Yahia, S. Madani, E. Prost, J. Prost, M. Bouchenak, and J. Belleville, “Tissue antioxidant status differs in spontaneously hypertensive rats fed fish protein or casein,” Journal of Nutrition, vol. 133, no. 2, pp. 479–482, 2003. View at Scopus
  38. Y. N. Wang, K. Q. Xiao, J. L. Liu, G. Dallner, and Z. Z. Guan, “Effect of long term fluoride exposure on lipid composition in rat liver,” Toxicology, vol. 146, no. 2-3, pp. 161–169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. X. He, M. G. Chen, G. X. Lin, and Q. Ma, “Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2·Keap1·Cul3 complex and recruiting Nrf2·Maf to the antioxidant response element enhancer,” Journal of Biological Chemistry, vol. 281, no. 33, pp. 23620–23631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Deneke, D. F. Baxter, D. T. Phelps, and B. L. Fanburg, “Increase in endothelial cell glutathione and precursor amino acid uptake by diethyl maleate and hyperoxia,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 257, no. 3, pp. 265–271, 1989. View at Scopus
  41. R. J. Reiter, D. Melchiorri, E. Sewerynek, and B. Poeggler, “A review of the evidence supporting melatonin's role as an antioxidant,” Journal of Pineal Research, vol. 18, no. 1, pp. 1–11, 1995.
  42. L. S. Kozina, A. V. Arutjunyan, S. L. Stvolinskii, M. S. Stepanova, M. G. Makletsova, and V. K. Khavinson, “Regulatory peptides protect brain neurons from hypoxia in vivo,” Doklady Biological Sciences, vol. 418, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. V. Rao and R. N. Bhatt, “Protective effect of melatonin on fluoride-induced oxidative stress and testicular dysfunction in rats,” Fluoride, vol. 45, no. 2, pp. 116–124, 2012.
  44. M. V. Rao and S. B. Thakur, “Effects of melatonin and amla on F-induced genotoxicity in human peripheral blood lymphocytes,” Fluoride, vol. 46, pp. 128–134, 2013.