About this Journal Submit a Manuscript Table of Contents
Archaea
Volume 2010 (2010), Article ID 967271, 8 pages
http://dx.doi.org/10.1155/2010/967271
Review Article

The Discussion Goes on: What Is the Role of Euryarchaeota in Humans?

Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, and Department of Medical Microbiology, RWTH Aachen University Hospital, 52057 Aachen, Germany

Received 12 August 2010; Accepted 11 November 2010

Academic Editor: Reinhard Hensel

Copyright © 2010 H.-P. Horz and G. Conrads. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. J. Paster, S. K. Boches, J. L. Galvin et al., “Bacterial diversity in human subgingival plaque,” Journal of Bacteriology, vol. 183, no. 12, pp. 3770–3783, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. Maukonen, J. Mättö, M. L. Suihko, and M. Saarela, “Intra-individual diversity and similarity of salivary and faecal microbiota,” Journal of Medical Microbiology, vol. 57, no. 12, pp. 1560–1568, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Rajilić-Stojanović, H. Smidt, and W. M. de Vos, “Diversity of the human gastrointestinal tract microbiota revisited,” Environmental Microbiology, vol. 9, no. 9, pp. 2125–2136, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. Cavicchioli, P. M. G. Curmi, N. Saunders, and T. Thomas, “Pathogenic archaea: do they exist?” BioEssays, vol. 25, no. 11, pp. 1119–1128, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. Conway de Macario and A. J. L. Macario, “Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis,” International Journal of Medical Microbiology, vol. 299, no. 2, pp. 99–108, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. B. Eckburg, P. W. Lepp, and D. A. Relman, “Archaea and their potential role in human disease,” Infection and Immunity, vol. 71, no. 2, pp. 591–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Nakamura, H. C. Lin, C. S. McSweeney, R. I. Mackie, and H. R. Gaskins, “Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease,” Annual Review of Food Science and Technology, vol. 1, no. 1, pp. 363–395, 2010.
  9. K. Michalke, A. Schmidt, B. Huber et al., “Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice,” Applied and Environmental Microbiology, vol. 74, no. 10, pp. 3069–3075, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. J. Meyer, K. Michalke, T. Kouril, and R. Hensel, “Volatilisation of metals and metalloids: an inherent feature of methanoarchaea?” Systematic and Applied Microbiology, vol. 31, no. 2, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. E. Vianna, S. Holtgraewe, I. Seyfarth, G. Conrads, and H. P. Horz, “Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease,” Journal of Bacteriology, vol. 190, no. 10, pp. 3779–3785, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. E. Vianna, G. Conrads, B. P. F. A. Gomes, and H. P. Horz, “Identification and quantification of archaea involved in primary endodontic infections,” Journal of Clinical Microbiology, vol. 44, no. 4, pp. 1274–1282, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. M. Vickerman, K. A. Brossard, D. B. Funk, A. M. Jesionowski, and S. R. Gill, “Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections,” Journal of Medical Microbiology, vol. 56, no. 1, pp. 110–118, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. T. Jiang, W. W. Xia, C. L. Li, W. Jiang, and J. P. Liang, “Preliminary study of the presence and association of bacteria and archaea in teeth with apical periodontitis,” International Endodontic Journal, vol. 42, no. 12, pp. 1096–1103, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. K. Yamabe, H. Maeda, S. Kokeguchi et al., “Distribution of Archaea in Japanese patients with periodontitis and humoral immune response to the components,” FEMS Microbiology Letters, vol. 287, no. 1, pp. 69–75, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Yamabe, H. Maeda, S. Kokeguchi et al., “Antigenic group II chaperonin in Methanobrevibacter oralis may cross-react with human chaperonin CCT,” Molecular Oral Microbiology, vol. 25, no. 2, pp. 112–122, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. U. Zügel and S. H. E. Kaufmann, “Immune response against heat shock proteins in infectious diseases,” Immunobiology, vol. 201, no. 1, pp. 22–35, 1999. View at Scopus
  18. U. Zügel and S. H. E. Kaufmann, “Role of heat shock proteins in protection from and pathogenesis of infectious diseases,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 19–39, 1999. View at Scopus
  19. D. Roccarina, E. C. Lauritano, M. Gabrielli, F. Franceschi, V. Ojetti, and A. Gasbarrini, “The role of methane in intestinal diseases,” American Journal of Gastroenterology, vol. 105, no. 6, pp. 1250–1256, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. C. J. Abell, M. A. Conlon, and A. L. Mcorist, “Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration,” Microbial Ecology in Health and Disease, vol. 18, no. 3-4, pp. 154–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Avivi-Green, S. Polak-Charcon, Z. Madar, and B. Schwartz, “Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: correlation with colon cancer inhibition,” Oncology Research, vol. 12, no. 2, pp. 83–95, 2000. View at Scopus
  22. D. Zgouras, A. Wächtershäuser, D. Frings, and J. Stein, “Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF- 1α nuclear translocation,” Biochemical and Biophysical Research Communications, vol. 300, no. 4, pp. 832–838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. S. Samuel and J. I. Gordon, “A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 10011–10016, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. H. Zhang, J. K. DiBaise, A. Zuccolo et al., “Human gut microbiota in obesity and after gastric bypass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2365–2370, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. F. Armougom, M. Henry, B. Vialettes, D. Raccah, and D. Raoult, “Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients,” PLoS One, vol. 4, no. 9, Article ID e7125, 2009. View at Publisher · View at Google Scholar · View at PubMed
  26. M. E. Vianna, G. Conrads, B. P. F. A. Gomes, and H. P. Horz, “T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype,” Oral Microbiology and Immunology, vol. 24, no. 5, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. E. M. Kulik, H. Sandmeier, K. Hinni, and J. Meyer, “Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis,” FEMS Microbiology Letters, vol. 196, no. 2, pp. 129–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. P. D. Scanlan, F. Shanahan, and J. R. Marchesi, “Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis,” BMC Microbiology, vol. 8, article no. 79, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. A. Mihajlovski, M. Alric, and J. F. Brugère, “A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene,” Research in Microbiology, vol. 159, no. 7-8, pp. 516–521, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. Mihajlovski, J. Dore, F. Levenez, M. Alric, and J. F. Brugere, “Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity,” Environmental Microbiology Reports, vol. 2, no. 2, pp. 272–280, 2010.
  31. C. L. Li, D. L. Liu, Y. T. Jiang et al., “Prevalence and molecular diversity of Archaea in subgingival pockets of periodontitis patients,” Oral Microbiology and Immunology, vol. 24, no. 4, pp. 343–346, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. A. P. A. Oxley, M. P. Lanfranconi, D. Würdemann et al., “Halophilic archaea in the human intestinal mucosa,” Environmental Microbiology, vol. 12, no. 9, pp. 2398–2410, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. Y. D. Nam, HO. W. Chang, K. H. Kim et al., “Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people,” Journal of Microbiology, vol. 46, no. 5, pp. 491–501, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. P. Horz, S. Scheer, F. Huenger, M. E. Vianna, and G. Conrads, “Selective isolation of bacterial DNA from human clinical specimens,” Journal of Microbiological Methods, vol. 72, no. 1, pp. 98–102, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon, “The human microbiome project,” Nature, vol. 449, no. 7164, pp. 804–810, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. Dridi, M. Henry, A. El Khéchine, D. Raoult, and M. Drancourt, “High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol,” PLoS One, vol. 4, no. 9, Article ID e7063, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. K. Kubota, H. Imachi, S. Kawakami, K. Nakamura, H. Harada, and A. Ohashi, “Evaluation of enzymatic cell treatments for application of CARD-FISH to methanogens,” Journal of Microbiological Methods, vol. 72, no. 1, pp. 54–59, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. A. Salonen, J. Nikkilä, J. Jalanka-Tuovinen et al., “Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis,” Journal of Microbiological Methods, vol. 81, no. 2, pp. 127–134, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. F. Rieu-Lesme, C. Delbès, and L. Sollelis, “Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem,” Current Microbiology, vol. 51, no. 5, pp. 317–321, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Ochsenreiter, D. Selezi, A. Quaiser, L. Bonch-Osmolovskaya, and C. Schleper, “Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR,” Environmental Microbiology, vol. 5, no. 9, pp. 787–797, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Burggraf, P. Heyder, and N. Eis, “A pivotal Archaea group,” Nature, vol. 385, no. 6619, p. 780, 1997. View at Scopus
  42. H. Huber, M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter, “A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont,” Nature, vol. 417, no. 6884, pp. 63–67, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. Y. Aller and P. F. Kemp, “Are Archaea inherently less diverse than Bacteria in the same environments?” FEMS Microbiology Ecology, vol. 65, no. 1, pp. 74–87, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. X. He, Y. Tian, L. Guo et al., “In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins,” Microbial Ecology, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. T. Brusa, F. Ferrari, and E. Canzi, “Methanogenic bacteria: presence in foodstuffs,” Journal of Basic Microbiology, vol. 38, no. 2, pp. 79–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. S. W. Roh, K. H. Kim, Y. D. Nam, HO. W. Chang, E. J. Park, and J. W. Bae, “Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing,” ISME Journal, vol. 4, no. 1, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. W. Martin, “Pathogenic archaebacteria: do they not exist because archaebacteria use different vitamins?” BioEssays, vol. 26, no. 5, pp. 592–593, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. S. Samuel, E. E. Hansen, J. K. Manchester et al., “Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 25, pp. 10643–10648, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. E. Vianna, G. Conrads, B. P. F. A. Gomes, and H. P. Horz, “Quantification and characterization of Synergistes in endodontic infections,” Oral Microbiology and Immunology, vol. 22, no. 4, pp. 260–265, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Hatamoto, H. Imachi, Y. Yashiro, A. Ohashi, and H. Harada, “Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing,” Applied and Environmental Microbiology, vol. 74, no. 11, pp. 3610–3614, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. T. Lueders, B. Pommerenke, and M. W. Friedrich, “Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil,” Applied and Environmental Microbiology, vol. 70, no. 10, pp. 5778–5786, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. F. Schreiber, P. Stief, A. Gieseke et al., “Denitrification in human dental plaque,” BMC Biology, vol. 8, article no. 24, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Lange, P. Westermann, and B. K. Ahring, “Archaea in protozoa and metazoa,” Applied Microbiology and Biotechnology, vol. 66, no. 5, pp. 465–474, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. N. Shinzato, T. Matsumoto, I. Yamaoka, T. Oshima, and A. Yamagishi, “Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 837–840, 1999. View at Scopus
  55. J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. View at Publisher · View at Google Scholar · View at PubMed