About this Journal Submit a Manuscript Table of Contents
Archaea
Volume 2013 (2013), Article ID 676450, 10 pages
http://dx.doi.org/10.1155/2013/676450
Research Article

Molecular Tools for the Detection of Nitrogen Cycling Archaea

Department of Microbiology and Center for Ecology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA

Received 30 August 2012; Accepted 19 December 2012

Academic Editor: Antoine Danchin

Copyright © 2013 Antje Rusch. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. Nicol, D. Tscherko, T. M. Embley, and J. I. Prosser, “Primary succession of soil Crenarchaeota across a receding glacier foreland,” Environmental Microbiology, vol. 7, no. 3, pp. 337–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. McCliment, K. M. Voglesonger, P. A. O'Day, E. E. Dunn, J. R. Holloway, and S. C. Cary, “Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage,” Environmental Microbiology, vol. 8, no. 1, pp. 114–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Siboni, E. Ben-Dov, A. Sivan, and A. Kushmaro, “Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle,” Environmental Microbiology, vol. 10, no. 11, pp. 2979–2990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Olson and C. A. Kellogg, “Microbial ecology of corals, sponges, and algae in mesophotic coral environments,” FEMS Microbiology Ecology, vol. 73, no. 1, pp. 17–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Preston, K. Y. Wu, T. F. Molinski, and E. F. DeLong, “A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6241–6246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Steger, P. Ettinger-Epstein, S. Whalan et al., “Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges,” Environmental Microbiology, vol. 10, no. 4, pp. 1087–1094, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. P. Hackstein and C. K. Stumm, “Methane production in terrestrial arthropods,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 12, pp. 5441–5445, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Boetius, K. Ravenschlag, C. J. Schubert et al., “A marine microbial consortium apparently mediating anaerobic oxidation methane,” Nature, vol. 407, no. 6804, pp. 623–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Jahn, M. Gallenberger, W. Paper et al., “Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea,” Journal of Bacteriology, vol. 190, no. 5, pp. 1743–1750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Moissl-Eichinger and H. Huber, “Archaeal symbionts and parasites,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 364–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Könneke, A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl, “Isolation of an autotrophic ammonia-oxidizing marine archaeon,” Nature, vol. 437, no. 7058, pp. 543–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B.-J. Park, S.-J. Park, D.-N. Yoon, S. Schouten, J. S. Sinninghe Damsté, and S.-K. Rhee, “Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria,” Applied and Environmental Microbiology, vol. 76, no. 22, pp. 7575–7587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Tourna, M. Stieglmeier, A. Spang et al., “Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 20, pp. 8420–8425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. G. Zumft, “Cell biology and molecular basis of denitrification?” Microbiology and Molecular Biology Reviews, vol. 61, no. 4, pp. 533–616, 1997. View at Scopus
  15. J. P. Amend and E. L. Shock, “Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria,” FEMS Microbiology Reviews, vol. 25, no. 2, pp. 175–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Philippot, “Denitrifying genes in bacterial and Archaeal genomes,” Biochimica et Biophysica Acta, vol. 1577, no. 3, pp. 355–376, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Cabello, M. D. Roldán, and C. Moreno-Vivián, “Nitrate reduction and the nitrogen cycle in archaea,” Microbiology, vol. 150, no. 11, pp. 3527–3546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley, “Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14683–14688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Arp and L. Y. Stein, “Metabolism of inorganic N compounds by ammonia-oxidizing bacteria,” Critical Reviews in Biochemistry and Molecular Biology, vol. 38, no. 6, pp. 471–495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Purkhold, M. Wagner, G. Timmermann, A. Pommerening-Röser, and H.-P. Koops, “16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 5, pp. 1485–1494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. de la Torre, C. B. Walker, A. E. Ingalls, M. Könneke, and D. A. Stahl, “Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol,” Environmental Microbiology, vol. 10, no. 3, pp. 810–818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Hatzenpichler, E. V. Lebedeva, E. Spieck et al., “A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 2134–2139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Hatzenpichler, “Diversity, physiology and niche differentiation of ammonia-oxidizing archaea,” Applied and Environmental Microbiology, vol. 78, no. 21, pp. 7501–7510, 2012. View at Publisher · View at Google Scholar
  24. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 27, no. 1, pp. 29–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. K. D. Pruitt, T. Tatusova, and D. R. Maglott, “NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins,” Nucleic Acids Research, vol. 35, no. 1, pp. D61–D65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. J. Richardson, B. C. Berks, D. A. Russell, S. Spiro, and C. J. Taylor, “Functional, biochemical and genetic diversity of prokaryotic nitrate reductases,” Cellular and Molecular Life Sciences, vol. 58, no. 2, pp. 165–178, 2001. View at Scopus
  27. R. W. Ye and S. M. Thomas, “Microbial nitrogen cycles: physiology, genomics and applications,” Current Opinion in Microbiology, vol. 4, no. 3, pp. 307–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Rütting, P. Boeckx, C. Müller, and L. Klemedtsson, “Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle,” Biogeosciences, vol. 8, no. 7, pp. 1779–1791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. E. Canfield, A. N. Glazer, and P. G. Falkowski, “The evolution and future of Earth's nitrogen cycle,” Science, vol. 330, no. 6001, pp. 192–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Jones, B. Stres, M. Rosenquist, and S. Hallin, “Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification,” Molecular Biology and Evolution, vol. 25, no. 9, pp. 1955–1966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Bartossek, G. W. Nicol, A. Lanzen, H.-P. Klenk, and C. Schleper, “Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context,” Environmental Microbiology, vol. 12, no. 4, pp. 1075–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. N. Throbäck, K. Enwall, Å. Jarvis, and S. Hallin, “Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE,” FEMS Microbiology Ecology, vol. 49, no. 3, pp. 401–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. J. Smith and A. M. Osborn, “Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology,” FEMS Microbiology Ecology, vol. 67, no. 1, pp. 6–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Zehr, B. D. Jenkins, S. M. Short, and G. F. Steward, “Nitrogenase gene diversity and microbial community structure: a cross-system comparison,” Environmental Microbiology, vol. 5, no. 7, pp. 539–554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Gaby and D. H. Buckley, “A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase,” PLoS ONE, vol. 7, no. 7, Article ID e42149, 2012.
  36. C. Linhart and R. Shamir, “The degenerate primer design problem,” Bioinformatics, vol. 18, no. 1, pp. S172–S180, 2002. View at Scopus
  37. P. Rice, I. Longden, and A. Bleasby, “EMBOSS: the European molecular biology open software suite,” Trends in Genetics, vol. 16, no. 6, pp. 276–277, 2000. View at Scopus
  38. B. P. Keough, T. M. Schmidt, and R. E. Hicks, “Archaeal nucleic acids in picoplankton from Great Lakes on three continents,” Microbial Ecology, vol. 46, no. 2, pp. 238–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Pascoe and R. E. Hicks, “Genetic structure and community DNA similarity of picoplankton communities from the Laurentian Great Lakes,” Journal of Great Lakes Research, vol. 30, supplement 1, pp. 185–195, 2004. View at Scopus
  40. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Marchler-Bauer, S. Lu, J. B. Anderson et al., “CDD: a conserved domain database for the functional annotation of proteins,” Nucleic Acids Research, vol. 39, supplement 1, pp. D225–D229, 2011. View at Publisher · View at Google Scholar
  42. G. M. Boratyn, A. A. Schaffer, R. Agarwala, S. F. Altschul, D. J. Lipman, and T. L. Madden, “Domain enhanced lookup time accelerated BLAST,” Biology Direct, vol. 7, article 12, 2012. View at Publisher · View at Google Scholar