About this Journal Submit a Manuscript Table of Contents
Archaea
Volume 2013 (2013), Article ID 920241, 7 pages
http://dx.doi.org/10.1155/2013/920241
Research Article

Localization of Methyl-Coenzyme M Reductase as Metabolic Marker for Diverse Methanogenic Archaea

1Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
2Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
3Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
4School of Veterinary and Biomedical Sciences, Murdoch University, 90 South Street Murdoch, WA 6150, Australia
5Courant Centre Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany

Received 21 September 2012; Accepted 9 January 2013

Academic Editor: J. Reitner

Copyright © 2013 Christoph Wrede et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Thauer, “Biochemistry of methanogenesis: a tribute to Marjory Stephenson,” Microbiology, vol. 144, no. 9, pp. 2377–2406, 1998. View at Scopus
  2. R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, “Methanogenic archaea: ecologically relevant differences in energy conservation,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Gottschalk and R. K. Thauer, “The Na+-translocating methyltransferase complex from methanogenic archaea,” Biochimica et Biophysica Acta, vol. 1505, no. 1, pp. 28–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Stupperich, A. Juza, M. Hoppert, and F. Mayer, “Cloning, sequencing and immunological characterization of the corrinoid-containing subunit of the N5-methyltetrahydromethanopterin:coenzyme-M methyltransferase from Methanobacterium thermoautotrophicum,” European Journal of Biochemistry, vol. 217, no. 1, pp. 115–121, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Deppenmeier, “Redox-driven proton translocation in methanogenic archaea,” Cellular and Molecular Life Sciences, vol. 59, no. 9, pp. 1513–1533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Stojanowic, G. J. Mander, E. C. Duin, and R. Hedderich, “Physiological role of the F420-non-reducing hydrogenase (MvH) from Methanothermobacter marburgensis,” Archives of Microbiology, vol. 180, no. 3, pp. 194–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. P. Hausinger, W. H. Orme-Johnson, and C. Walsh, “Nickel tetrapyrrole cofactor F430: comparison of the forms bound to methyl coenzyme M reductase and protein free in cells of Methanobacterium thermoautotrophicum ΔH,” Biochemistry, vol. 23, no. 5, pp. 801–804, 1984. View at Scopus
  8. I. Thomas, H.-C. Dubourguier, G. Prensier, P. Debeire, and G. Albagnac, “Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae,” Archives of Microbiology, vol. 148, no. 3, pp. 193–201, 1987. View at Scopus
  9. J. Ellermann, R. Hedderich, R. Böcher, and R. K. Thauer, “The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg),” European Journal of Biochemistry, vol. 172, no. 3, pp. 669–677, 1988. View at Scopus
  10. J. Ellermann, S. Rospert, R. K. Thauer et al., “Methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum (strain Marburg)-purity, activity and novel inhibitors,” European Journal of Biochemistry, vol. 184, no. 1, pp. 63–68, 1989. View at Scopus
  11. L. G. Bonacker, S. Baudner, and R. K. Thauer, “Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-speficic antisera,” European Journal of Biochemistry, vol. 206, no. 1, pp. 87–92, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Ossmer, T. Mund, and P. L. Hartzell, “Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 16, pp. 5789–5792, 1986. View at Scopus
  13. H. C. Aldrich, D. B. Beimborn, M. Bokranz, and P. Schönheit, “Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum,” Archives of Microbiology, vol. 147, no. 2, pp. 190–194, 1987. View at Scopus
  14. F. Mayer, M. Rohde, M. Salzmann, A. Jussofie, and G. Gottschalk, “The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Gö1 that contains components of the methylreductase system,” Journal of Bacteriology, vol. 170, no. 4, pp. 1438–1444, 1988. View at Scopus
  15. M. Hoppert and F. Mayer, “Electron microscopy of native and artificial methylreductase high-molecular-weight complexes in strain Gö 1 and Methanococcus voltae,” FEBS Letters, vol. 267, no. 1, pp. 33–37, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Krüger, A. Meyerdierks, F. O. Glöckner et al., “A conspicuous nickel protein in microbial mats that oxidize methane anaerobically,” Nature, vol. 426, no. 6968, pp. 878–881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Hallam, N. Putnam, C. M. Preston et al., “Reverse methanogenesis: testing the hypothesis with environmental genomics,” Science, vol. 305, no. 5689, pp. 1457–1462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Shima, M. Krüger, T. Weinert et al., “Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically,” Nature, vol. 481, no. 7379, pp. 98–101, 2011. View at Publisher · View at Google Scholar
  19. A. Meyerdierks, M. Kube, I. Kostadinov et al., “Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group,” Environmental Microbiology, vol. 12, no. 2, pp. 422–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Schönheit, J. Moll, and R. K. Thauer, “Growth parameters (K(s), μ(max), Y(s)) of Methanobacterium thermoautotrophicum,” Archives of Microbiology, vol. 127, no. 1, pp. 59–65, 1980. View at Scopus
  21. H. Huber, M. Thomm, H. Konig, G. Thies, and K. O. Stetter, “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen,” Archives of Microbiology, vol. 132, no. 1, pp. 47–50, 1982. View at Scopus
  22. N. Belay, R. Sparling, and L. Daniels, “Dinitrogen fixation by a thermophilic methanogenic bacterium,” Nature, vol. 312, no. 5991, pp. 286–288, 1984. View at Scopus
  23. J. Winter, C. Lerp, and H. P. Zabel, “Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen,” Systematic and Applied Microbiology, vol. 5, no. 4, pp. 457–466, 1984. View at Scopus
  24. H. Hippe, D. Caspari, K. Fiebig, and G. Gottschalk, “Utilization of trimethylamine and other N methyl compounds for growth and methane formation by Methanosarcina barkeri,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 1, pp. 494–498, 1979. View at Scopus
  25. H. König and K. O. Stetter, “Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines,” Zentralblatt für Bakteriologie Mikrobiologie und Hygiene, vol. 3, no. 4, pp. 478–490, 1982. View at Scopus
  26. E. Harlow and D. Lane, Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, New York, NY, USA, 1988.
  27. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Scopus
  29. H. Blum, H. Beier, and J. H. Gross, “Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels,” Electrophoresis, vol. 8, no. 2, pp. 93–99, 1987. View at Publisher · View at Google Scholar
  30. M. Hoppert and A. Holzenburg, Electron Microscopy in Microbiology, Bios Scientific, Oxford, UK, 1998.
  31. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  32. J. Reitner, J. Peckmann, M. Blumenberg, W. Michaelis, A. Reimer, and V. Thiel, “Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 227, no. 1–3, pp. 18–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Heller, M. Hoppert, and J. Reitner, “Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type,” Geomicrobiology Journal, vol. 25, no. 3-4, pp. 149–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kämper, S. Vetterkind, R. Berker, and M. Hoppert, “Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy,” Journal of Microbiological Methods, vol. 57, no. 1, pp. 55–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. L. G. Bonacker, S. Baudner, E. Mörschel, R. Böcher, and R. K. Thauer, “Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum,” European Journal of Biochemistry, vol. 217, no. 2, pp. 587–595, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Wrede, V. Krukenberg, A. Dreier, J. Reitner, C. Heller, and M. Hoppert, “Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms,” Geomicrobiology Journal, vol. 30, no. 3, pp. 214–227, 2013.
  37. S. Rospert, D. Linder, J. Ellermann, and R. K. Thauer, “Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and delta H,” European Journal of Biochemistry, vol. 194, no. 3, pp. 871–877, 1990. View at Scopus
  38. A. Lehmacher and H. P. Klenk, “Characterization and phylogeny of mcrII, a gene cluster encoding an isoenzyme of methyl coenzyme M reductase from hyperthermophilic Methanothermus fervidus,” Molecular and General Genetics, vol. 243, no. 2, pp. 198–206, 1994. View at Scopus
  39. C. J. Bult, O. White, G. J. Olsen et al., “Complete genome sequence of the Methanogenic archaeon, Methanococcus jannaschii,” Science, vol. 273, no. 5278, pp. 1058–1073, 1996. View at Scopus
  40. E. Springer, M. S. Sachs, C. R. Woese, and D. R. Boone, “Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae,” International Journal of Systematic Bacteriology, vol. 45, no. 3, pp. 554–559, 1995. View at Scopus
  41. R. Jaenchen, H. H. Gilles, and R. K. Thauer, “Inhibition of factor F430 synthesis by levulinic acid in Methanobacterium thermoautotrophicum,” FEMS Microbiology Letters, vol. 12, no. 2, pp. 167–170, 1981. View at Publisher · View at Google Scholar · View at Scopus
  42. K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewert, and E. F. DeLong, “Methane-consuming archaebacteria in marine sediments,” Nature, vol. 398, no. 6730, pp. 802–805, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. V. J. Orphan, C. H. House, K. U. Hinrichs, K. D. McKeegan, and E. F. DeLong, “Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis,” Science, vol. 293, no. 5529, pp. 484–487, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hoppert and F. Mayer, “Principles of macromolecular organization and cell function in bacteria and archaea,” Cell Biochemistry and Biophysics, vol. 31, no. 3, pp. 247–284, 1999. View at Scopus