About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2010 (2010), Article ID 130646, 9 pages
http://dx.doi.org/10.1155/2010/130646
Review Article

Rationale for Targeting CD6 as a Treatment for Autoimmune Diseases

1EA2216 Immunology and Pathology and IFR 148 ScInBioS, European University of Brittany, BP 824, 29609 Brest, France
2Experimental Immunotherapy Department, Center for Molecular Immunology, P.O. Box 16040, 11600 La Havana, Cuba
3Laboratory of Immunology, CHU Brest, Brest University Medical School Hospital, BP 824, 29609 Brest, France

Received 16 August 2010; Accepted 22 December 2010

Academic Editor: Deh-Ming Chang

Copyright © 2010 Ruby Alonso-Ramirez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Montero, L. Falcon, Y. Morera, J. Delgado, J. F. Amador, and R. Perez, “CD6 molecule may be important in the pathological mechanisms of lymphocytes adhesion to human skin in psoriasis and ior t1 MAb a possible new approach to treat this disease,” Autoimmunity, vol. 29, pp. 155–156, 1999.
  2. E. Montero, G. Reyes, M. Guibert, et al., “Immunodiagnosis and therapeutic immunosuppression in rheumatoid arthritis with ior t1 (anti-CD6) monoclonal antibody,” Arthritis Research & Therapy, vol. 4, article 38, 2002.
  3. D. A. Hafler, R. J. Fallis, and D. M. Dawson, “Immunologic responses of progressive multiple sclerosis patients treated with an anti-T-cell monoclonal antibody, anti-T12,” Neurology, vol. 36, no. 6, pp. 777–784, 1986.
  4. E. L. Reinherz, R. Geha, J. M. Rappeport, et al., “Reconstitution after transplantation with Tlymphocyte-depleted HLA haplotype-mismatched bone marrow for severe combined immunodeficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 6047–6051, 1982.
  5. D. Resnick, A. Pearson, and M. Krieger, “The SRCR superfamily: a family reminiscent of the Ig superfamily,” Trends in Biochemical Sciences, vol. 19, no. 1, pp. 5–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Roque-Navarro, C. Mateo, J. Lombardero et al., “Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method,” Hybridoma and Hybridomics, vol. 22, no. 4, pp. 245–257, 2003. View at Scopus
  7. R. Alonso, V. Huerta, J. De Leon et al., “Towards the definition of a chimpanzee and human conserved CD6 domain 1 epitope recognized by T1 monoclonal antibody,” Hybridoma, vol. 27, no. 4, pp. 291–301, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. E. Montero, R. Casaco, Z. Muzzora, R. Alonso-Ramirez, and R. Parey, “Pharmaceutical composition, comprising an anti-CD6 mAb used in the diagnosis and treatment of rheumatoid arthritis,” EP2119452, 2009.
  9. O. Lecomte, J. B. Bock, B. W. Birren, D. Vollrath, and J. R. Parnes, “Molecular linkage of the mouse CD5 and CD6 genes,” Immunogenetics, vol. 44, no. 5, pp. 385–390, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Padilla, J. Calvo, J. M. Vilà et al., “Genomic organization of the human CD5 gene,” Immunogenetics, vol. 51, no. 12, pp. 993–1001, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Koskinen, J. Salomonsen, M. Goodchild, N. Bumstead, Y. Boyd, and O. Vainio, “Structure and chromosomal localization of chicken CD5,” Scandinavian Journal of Immunology, vol. 54, no. 1-2, pp. 141–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Renaudineau, S. Hillion, A. Saraux, R. A. Mageed, and P. Youinou, “An alternative exon 1 of the CD5 gene regulates CD5 expression in human B lymphocytes,” Blood, vol. 106, no. 8, pp. 2781–2789, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Y. Renaudineau, S. Vallet, C. Le Dantec, S. Hillion, A. Saraux, and P. Youinou, “Characterization of the human CD5 endogenous retrovirus-E in B lymphocytes,” Genes and Immunity, vol. 6, no. 8, pp. 663–671, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Arman, N. Aguilera-Montilla, V. Mas et al., “The human CD6 gene is transcriptionally regulated by RUNX and Ets transcription factors in T cells,” Molecular Immunology, vol. 46, no. 11-12, pp. 2226–2235, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Arman, J. Calvo, M. E. Trojanowska et al., “Transcriptional regulation of human CD5: important role of Ets transcription factors in CD5 expression in T cells,” Journal of Immunology, vol. 172, no. 12, pp. 7519–7529, 2004. View at Scopus
  16. R. Berland and H. H. Wortis, “An NFAT-dependent enhancer is necessary for anti-IgM-mediated induction of murine CD5 expression in primary splenic B cells,” Journal of Immunology, vol. 161, no. 1, pp. 277–285, 1998. View at Scopus
  17. Y. Yang, C. H. Contag, D. Felsher et al., “The E47 transcription factor negatively regulates CD5 expression during thymocyte development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 11, pp. 3898–3902, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. G. Singer, B. C. Richardson, D. Powers et al., “Role of the CD6 glycoprolein in antigen-specific and autoreactive responses of cloned human T lymphocytes,” Immunology, vol. 88, no. 4, pp. 537–543, 1996. View at Scopus
  19. P. L. De Jager, X. Jia, J. Wang et al., “Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci,” Nature Genetics, vol. 41, no. 7, pp. 776–782, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. B. Swaminathan, F. Matesanz, M. L. Cavanillas et al., “Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain,” Journal of Neuroimmunology, vol. 223, no. 1-2, pp. 100–103, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. G. A. Heap, J. H. M. Yang, K. Downes et al., “Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing,” Human Molecular Genetics, vol. 19, no. 1, pp. 122–134, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. N. Endres, G. Riethmueller, and E. P. Rieber, “Functional characterization of a novel B-cell subset defined by the CD6 antigen,” in Leukocyte Typing IV, W. Knapp, B. Doerken, W. R. Gilks, et al., Eds., pp. 340–351, Oxford University Press, Oxford, UK, 1989.
  23. B. Mayer, I. Funke, B. Seed, G. Riethmuller, and E. Weiss, “Expression of the CD6 T lymphocyte differentiation antigen in normal human brain,” Journal of Neuroimmunology, vol. 29, no. 1–3, pp. 193–202, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Konno, J. S. Ahn, H. Kitamura et al., “Tissue distribution of CD6 and CD6 ligand in cattle: expression of the CD6 ligand (CD166) in the autonomic nervous system of cattle and the human,” Journal of Leukocyte Biology, vol. 69, no. 6, pp. 944–950, 2001. View at Scopus
  25. L. M. Osorio, A. De Santiago, M. Aguilar-Santelises, H. Mellstedt, and M. Jondal, “CD6 ligation modulates the Bcl-2/Bax ratio and protects chronic lymphocytic leukemia B cells from apoptosis induced by anti-IgM,” Blood, vol. 89, no. 8, pp. 2833–2841, 1997. View at Scopus
  26. M. A. Bowen, G. S. Whitney, M. Neubauer et al., “Structure and chromosomal location of the human CD6 gene: detection of five human CD6 isoforms,” Journal of Immunology, vol. 158, no. 3, pp. 1149–1156, 1997. View at Scopus
  27. G. Whitney, M. Bowen, M. Neubauer, and A. Aruffo, “Cloning and characterization of murine CD6,” Molecular Immunology, vol. 32, no. 1, pp. 89–92, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. W. H. Robinson, S. S. Prohaska, J. C. Santoro, H. L. Robinson, and J. R. Parnes, “Identification of a mouse protein homologous to the human CD6 T cell surface protein and sequence of the corresponding cDNA,” Journal of Immunology, vol. 155, no. 10, pp. 4739–4748, 1995. View at Scopus
  29. M. A. A. Castro, M. I. Oliveira, R. J. Nunes et al., “Extracellular isoforms of CD6 generated by alternative splicing regulate targeting of CD6 to the immunological synapse,” Journal of Immunology, vol. 178, no. 7, pp. 4351–4361, 2007. View at Scopus
  30. L. Cardenas, A. C. Carrera, E. Yague, R. Pulido, F. Sanchez-Madrid, and M. O. De Landazuri, “Phosphorylation-dephosphorylation of the CD6 glycoprotein renders two isoforms of 130 and 105 kilodaltons. Effect of serum and protein kinase C activators,” Journal of Immunology, vol. 145, no. 5, pp. 1450–1455, 1990. View at Scopus
  31. N. J. Hassan, S. J. Simmonds, N. G. Clarkson et al., “CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76,” Molecular and Cellular Biology, vol. 26, no. 17, pp. 6727–6738, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. I. Gimferrer, A. Ibáñez, M. Farnós et al., “The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains,” Journal of Immunology, vol. 175, no. 3, pp. 1406–1414, 2005. View at Scopus
  33. J. N. Wu and G. A. Koretzky, “The SLP-76 family of adapter proteins,” Seminars in Immunology, vol. 16, no. 6, pp. 379–393, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. A. A. Castro, R. J. Nunes, M. I. Oliveira et al., “OX52 is the rat homologue of CD6: evidence for an effector function in the regulation of CD5 phosphorylation,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 183–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Wee, G. L. Schieven, J. M. Kirihara, T. T. Tsu, J. A. Ledbetter, and A. Aruffo, “Tyrosine phosphorylation of CD6 by stimulation of CD3: augmentation by the CD4 and CD2 coreceptors,” Journal of Experimental Medicine, vol. 177, no. 1, pp. 219–223, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Kobarg, G. S. Whitney, D. Palmer, A. Aruffo, and M. A. Bowen, “Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains,” European Journal of Immunology, vol. 27, no. 11, pp. 2971–2980, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Ibáñez, M. R. Sarrias, M. Farnós et al., “Mitogen-activated protein kinase pathway activation by the CD6 lymphocyte surface receptor,” Journal of Immunology, vol. 177, no. 2, pp. 1152–1159, 2006. View at Scopus
  38. R. A. Rasmussen, S. L. Counts, J. F. Daley, and S. F. Schlossman, “Isolation and characterization of CD6 T cells from peripheral blood,” Journal of Immunology, vol. 152, no. 2, pp. 527–536, 1994. View at Scopus
  39. D. D. Patel, S. F. Wee, L. P. Whichard et al., “Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells,” Journal of Experimental Medicine, vol. 181, no. 4, pp. 1563–1568, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Bowen, D. D. Patel, X. Li et al., “Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand,” Journal of Experimental Medicine, vol. 181, no. 6, pp. 2213–2220, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Bowen, J. Bajorath, M. D'Egidio et al., “Characterization of mouse ALCAM (CD166): the CD6-binding domain is conserved in different homologs and mediates cross-species binding,” European Journal of Immunology, vol. 27, no. 6, pp. 1469–1478, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. te Riet, A. W. Zimmerman, A. Cambi et al., “Distinct kinetic and mechanical properties govern ALCAM-mediated interactions as shown by single-molecule force spectroscopy,” Journal of Cell Science, vol. 120, no. 22, pp. 3965–3976, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. A. Bowen, J. Bajorath, A. W. Siadak et al., “The amino-terminal immunoglobulin-like domain of activated leukocyte cell adhesion molecule binds specifically to the membrane-proximal scavenger receptor cysteine-rich domain of CD6 with a 1:1 stoichiometry,” Journal of Biological Chemistry, vol. 271, no. 29, pp. 17390–17396, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Bowen, A. A. Aruffo, and J. Bajorath, “Cell surface receptors and their ligands: in vitro analysis of CD6-CD166 interactions,” Proteins, vol. 40, no. 3, pp. 420–428, 2000.
  45. F. Cortés, F. Deschaseaux, N. Uchida et al., “HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues,” Blood, vol. 93, no. 3, pp. 826–837, 1999. View at Scopus
  46. N. J. Hassan, A. N. Barclay, and M. H. Brown, “Frontline: optimal T cell activation requires the engagement of CD6 and CD166,” European Journal of Immunology, vol. 34, no. 4, pp. 930–940, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. R. Cayrol, K. Wosik, J. L. Berard et al., “Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system,” Nature Immunology, vol. 9, no. 2, pp. 137–145, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. C. Levesque, C. S. Heinly, L. P. Whichard, and D. D. Patel, “Cytokine-regulated expression of activated leukocyte cell adhesion molecule (CD166) on monocyte-lineage cells and in rheumatoid arthritis synovium,” Arthritis and Rheumatism, vol. 41, no. 12, pp. 2221–2229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. A. Abidi, M. K. Saifullah, M. D. Zafiropulos et al., “CD166 expression, characterization, and localization in salivary epithelium: implications for function during sialoadenitis,” Journal of Clinical Immunology, vol. 26, no. 1, pp. 12–21, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. S. F. Ofori-Acquah and J. A. King, “Activated leukocyte cell adhesion molecule: a new paradox in cancer,” Translational Research, vol. 151, no. 3, pp. 122–128, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. F. Wee, W. C. Wang, A. G. Farr et al., “Characterization of a CD6 ligand(s) expressed on human- and murine-derived cell lines and murine lymphoid tissues,” Cellular Immunology, vol. 158, no. 2, pp. 353–364, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. S. Joo, N. G. Singer, J. L. Endres et al., “Evidence for the expression of a second CD6 ligand by synovial fibroblasts,” Arthritis and Rheumatism, vol. 43, no. 2, pp. 329–335, 2000. View at Scopus
  53. M. K. Saifullah, D. A. Fox, S. Sarkar et al., “Expression and characterization of a novel CD6 ligand in cells derived from joint and epithelial tissues,” Journal of Immunology, vol. 173, no. 10, pp. 6125–6133, 2004. View at Scopus
  54. K. T. Stanley, C. VanDort, C. Motyl, J. Endres, and D. A. Fox, “Immunocompetent properties of human osteoblasts: interactions with T lymphocytes,” Journal of Bone and Mineral Research, vol. 21, no. 1, pp. 29–36, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. R. Sarrias, M. Farnós, R. Mota et al., “CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 28, pp. 11724–11729, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. Vera, R. Fenutría, O. Cañadas et al., “The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1506–1511, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. M. Ramos-Casals, J. Font, M. García-Carrasco et al., “High circulating levels of soluble scavenger receptors (sCD5 and sCD6) in patients with primary Sjögren's syndrome,” Rheumatology, vol. 40, no. 9, pp. 1056–1059, 2001. View at Scopus
  58. C. Jamin, G. Magadur, A. Lamour et al., “Cell-free CD5 in patients with rheumatic diseases,” Immunology Letters, vol. 31, no. 1, pp. 79–83, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Gimferrer, M. Calvo, M. Mittelbrunn et al., “Relevance of CD6-mediated interactions in T cell activation and proliferation,” Journal of Immunology, vol. 173, no. 4, pp. 2262–2270, 2004. View at Scopus
  60. A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. Van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood, vol. 107, no. 8, pp. 3212–3220, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. I. Gimferrer, M. Farnós, M. Calvo et al., “The accessory molecules CD5 and CD6 associate on the membrane of lymphoid T cells,” Journal of Biological Chemistry, vol. 278, no. 10, pp. 8564–8571, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. R. Pospisil, G. J. Silverman, G. E. Marti, A. Aruffo, M. A. Bowen, and R. G. Mage, “CD5 is a potential selecting ligand for B-cell surface immunoglobulin: a possible role in maintenance and selective expansion of normal and malignant B cells,” Leukemia and Lymphoma, vol. 36, no. 3-4, pp. 353–365, 2000. View at Scopus
  63. S. Garaud, C. Le Dantec, C. Berthou, P. M. Lydyard, P. Youinou, and Y. Renaudineau, “Selection of the alternative exon 1 from the cd5 gene down-regulates membrane level of the protein in B lymphocytes,” Journal of Immunology, vol. 181, no. 3, pp. 2010–2018, 2008. View at Scopus
  64. M. A. A. Castro, P. A. Tavares, M. S. Almeida et al., “CD2 physically associates with CD5 in rat T lymphocytes with the involvement of both extracellular and intracellular domains,” European Journal of Immunology, vol. 32, no. 5, pp. 1509–1518, 2002. View at Scopus
  65. M. A. A. Castro, R. J. Nunes, M. I. Oliveira et al., “OX52 is the rat homologue of CD6: evidence for an effector function in the regulation of CD5 phosphorylation,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 183–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. N. G. Singer, D. A. Fox, T. M. Haqqi et al., “CD6: expression during development, apoptosis and selection of human and mouse thymocytes,” International Immunology, vol. 14, no. 6, pp. 585–597, 2002. View at Scopus
  67. H. S. Azzam, A. Grinberg, K. Lui, H. Shen, E. W. Shores, and P. E. Love, “CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity,” Journal of Experimental Medicine, vol. 188, no. 12, pp. 2301–2311, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Alonso, C. Buors, C. Le Dantec et al., “Aberrant expression of CD6 on B-cell subsets from patients with Sjögren's syndrome,” Journal of Autoimmunity, vol. 35, no. 4, pp. 336–341, 2010. View at Publisher · View at Google Scholar · View at PubMed
  69. C. M. Bott, J. B. Doshi, C. Morimoto, P. L. Romain, and D. A. Fox, “Activation of human T cells through CD6: functional effects of a novel anti-CD6 monoclonal antibody and definition of four epitopes of the CD6 glycoprotein,” International Immunology, vol. 5, no. 7, pp. 783–792, 1993. View at Scopus
  70. L. M. Osorio, C. Ordonez, C. A. Garcia, M. Jondal, and S. C. Chow, “Evidence for protein tyrosine kinase involvement in GD6-induced T cell proliferation,” Cellular Immunology, vol. 166, no. 1, pp. 44–52, 1995. View at Publisher · View at Google Scholar · View at PubMed
  71. L. M. Osorio, M. Rottenberg, M. Jondal, and S. C. Chow, “Simultaneous cross-linking of CD6 and CD28 induces cell proliferation in resting T cells,” Immunology, vol. 93, no. 3, pp. 358–365, 1998. View at Publisher · View at Google Scholar
  72. R. L. Kirkman, J. L. Araujo, and G. J. Busch, “Treatment of acute renal allograft rejection with monoclonal anti-T12 antibody,” Transplantation, vol. 36, no. 6, pp. 620–626, 1983.
  73. D. C. Roy, R. Tantravahi, C. Murray et al., “Natural history of mixed chimerism after bone marrow transplantation with CD6-depleted allogeneic marrow: a stable equilibrium,” Blood, vol. 75, no. 1, pp. 296–304, 1990.
  74. N. C. Patel, J. Chinen, H. M. Rosenblatt et al., “Long-term outcomes of nonconditioned patients with severe combined immunodeficiency transplanted with HLA-identical or haploidentical bone marrow depleted of T cells with anti-CD6 mAb,” Journal of Allergy and Clinical Immunology, vol. 122, no. 6, pp. 1185–1193, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. R. J. Soiffer, D. Fairclough, M. Robertson et al., “CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission,” Blood, vol. 89, no. 8, pp. 3039–3047, 1997.